A273189 a(n) is the third number in a triple consisting of 3 numbers, which when squared are part of a right diagonal of a magic square of squares.
51, 401, 2451, 14401, 84051, 490001, 2856051, 16646401, 97022451, 565488401, 3295908051, 19209960001, 111963852051, 652573152401, 3803475062451, 22168277222401, 129206188272051, 753068852410001, 4389206926188051, 25582172704718401, 149103829302122451
Offset: 0
Examples
a(2)= 401*6 - (51 - 96)= 2451; a(3)= 2451*6 - (401 - 96)= 14401; a(4)= 14401*6 - (2451 - 96)= 84051.
Links
- Colin Barker, Table of n, a(n) for n = 0..1000
- E. Gutierrez, Recursion Methods to Generate New Integer Sequences (Part VIF)
- E. Gutierrez, Table of Tuples and Use of Magic Ratio for Tuple Conversion (Part IB)
- E. Gutierrez, Table of Tuples for Square of Squares (Part IC)
- Index entries for linear recurrences with constant coefficients, signature (7,-7,1).
Programs
-
Mathematica
CoefficientList[Series[(51 + 44 x + x^2)/((1 - x) (1 - 6 x + x^2)), {x, 0, 20}], x] (* Michael De Vlieger, May 18 2016 *) LinearRecurrence[{7,-7,1},{51,401,2451},30] (* Harvey P. Dale, Feb 21 2020 *)
-
PARI
Vec((51+44*x+x^2)/((1-x)*(1-6*x+x^2)) + O(x^50)) \\ Colin Barker, May 18 2016
Formula
a(0)= 51, a(1)= 401, a(n+1)= a(n)*6 - a(n-1) + k where k=96.
From Colin Barker, May 18 2016: (Start)
a(n) = (-24+25/2*(3-2*sqrt(2))^(1+n)+25/2*(3+2*sqrt(2))^(1+n)).
a(n) = 7*a(n-1)-7*a(n-2)+a(n-3) for n>2.
G.f.: (51+44*x+x^2) / ((1-x)*(1-6*x+x^2)).
(End)
Extensions
More terms from Colin Barker, May 18 2016
Comments