cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273195 The determinant of the difference table of the divisors vanishes for these numbers.

Original entry on oeis.org

10, 28, 50, 99, 110, 130, 170, 171, 190, 196, 222, 230, 250, 290, 310, 370, 410, 430, 470, 476, 530, 532, 550, 590, 610, 644, 650, 670, 710, 730, 790, 812, 830, 850, 868, 890, 950, 970
Offset: 1

Views

Author

Peter Luschny, May 18 2016

Keywords

Comments

Prime power-like numbers (A273200) have nonvanishing determinants.

Examples

			50 is in this sequence because the determinant of DTD(50) = 0.
[  1  2  5 10 25 50]
[  1  3  5 15 25  0]
[  2  2 10 10  0  0]
[  0  8  0  0  0  0]
[  8 -8  0  0  0  0]
[-16  0  0  0  0  0]
		

Crossrefs

Cf. A273200.

Programs

  • Mathematica
    selQ[n_] := Module[{d = Divisors[n], ld}, ld = Length[d]; Det @ Table[ PadRight[ Differences[d, k], ld], {k, 0, ld-1}] == 0];
    Select[Range[1000], selQ] (* Jean-François Alcover, Jul 15 2019 *)
  • Sage
    def is_A273195(n):
        D = divisors(n)
        T = matrix(ZZ, len(D))
        for (m, d) in enumerate(D):
            T[0, m] = d
            for k in range(m-1, -1, -1) :
                T[m-k, k] = T[m-k-1, k+1] - T[m-k-1, k]
        return T.det() == 0
    print([n for n in range(1, 1000) if is_A273195(n)])