A273229 Squares that remain squares if you decrease them by a repunit with the same number of digits.
1, 36, 400, 3136, 24336, 115600, 118336, 126736, 211600, 309136, 430336, 577600, 5973136, 19713600, 30869136, 53582400, 3086469136, 4310710336, 71526293136, 111155560000, 112104432400, 113531259136, 137756776336, 206170483600, 245996160400, 262303768336, 308642469136
Offset: 1
Examples
1 - 1 = 0 = 0^2; 36 - 11 = 25 = 5^2; 400 - 111 = 289 = 17^2;
Links
- Giovanni Resta, Table of n, a(n) for n = 1..10000
Programs
-
Maple
P:=proc(q,h) local n; for n from 1 to q do if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2); fi; od; end: P(10^9,1);
-
Mathematica
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@k}, Union[#+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[ x= #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
Comments