cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273230 Squares that remain squares if you decrease them by 3 times a repunit with the same number of digits.

Original entry on oeis.org

4, 49, 529, 4489, 38809, 344569, 363609, 375769, 444889, 558009, 597529, 700569, 7198489, 35366809, 44448889, 65983129, 4444488889, 5587114009, 83574762649, 335330171929, 359763638809, 390241344249, 403831017529, 407200963129, 435775577689, 444444888889, 453557800089
Offset: 1

Views

Author

Paolo P. Lava, May 18 2016

Keywords

Comments

Apart from the initial term, any number ends in 9.

Examples

			4 - 3*1 = 1 = 1^2;
49 - 3*11 = 16 = 4^2;
529 - 3*111 = 196 = 14^2.
		

Crossrefs

Programs

  • Maple
    P:=proc(q,h) local n; for n from 1 to q do
    if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
    fi; od; end: P(10^9,3);
  • Mathematica
    sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 3 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)

A335598 Squares that remain squares when the repunit with the same number of digits is added.

Original entry on oeis.org

0, 25, 289, 2025, 13225, 100489, 198025, 319225, 466489, 4862025, 19758025, 42471289, 1975358025, 3199599225, 60415182025, 134885049289, 151192657225, 197531358025, 207612366025, 248956092025, 447136954489, 588186226489, 19753091358025, 31996727599225, 311995522926025, 1975308691358025
Offset: 1

Views

Author

Keywords

Examples

			0 is a term because 0 + 1 = 1. The result is another square.
25 is a term because 25 + 11 = 36. The result is another square.
289 is a term because 289 + 111 = 400. The result is another square.
		

Crossrefs

Programs

  • Maple
    f:= proc(d,q,m) local x,y;
    if d < q/d then return NULL fi;
    x:= ((d-q/d)/2)^2;
    if x >= 10^m and x < 10^(m+1) then x else NULL fi;
    end proc:
    R:= 0:
    for m from 1 to 20 do
      q:= (10^m-1)/9;
      V:= sort(convert(map(f, numtheory:-divisors(q),q,m-1),list));
      R:= R, op(V);
    od:
    R; # Robert Israel, Aug 21 2020
  • PARI
    lista(limit)={for(k=0, sqrtint(limit), my(t=k^2); if(issquare(t + (10^if(t, 1+logint(t,10), 1)-1)/9), print1(t, ", ")))}
    { lista(10^12) } \\ Andrew Howroyd, Aug 11 2020

Extensions

Name corrected by Robert Israel, Aug 26 2020
Showing 1-2 of 2 results.