A273230
Squares that remain squares if you decrease them by 3 times a repunit with the same number of digits.
Original entry on oeis.org
4, 49, 529, 4489, 38809, 344569, 363609, 375769, 444889, 558009, 597529, 700569, 7198489, 35366809, 44448889, 65983129, 4444488889, 5587114009, 83574762649, 335330171929, 359763638809, 390241344249, 403831017529, 407200963129, 435775577689, 444444888889, 453557800089
Offset: 1
4 - 3*1 = 1 = 1^2;
49 - 3*11 = 16 = 4^2;
529 - 3*111 = 196 = 14^2.
-
P:=proc(q,h) local n; for n from 1 to q do
if type(sqrt(n^2-h*(10^(ilog10(n^2)+1)-1)/9),integer) then print(n^2);
fi; od; end: P(10^9,3);
-
sol[k_] := Block[{x, e = IntegerLength@k, d = Divisors@ k}, Union[ #+k/# & /@ Select[ Take[d, Ceiling[ Length@d/2]], EvenQ[x = #+k/#] && IntegerLength[ x^2/4] == e &]]^2/4]; r[n_] := 3 (10^n-1)/9; Flatten[sol /@ r /@ Range[12]] (* Giovanni Resta, May 18 2016 *)
A335598
Squares that remain squares when the repunit with the same number of digits is added.
Original entry on oeis.org
0, 25, 289, 2025, 13225, 100489, 198025, 319225, 466489, 4862025, 19758025, 42471289, 1975358025, 3199599225, 60415182025, 134885049289, 151192657225, 197531358025, 207612366025, 248956092025, 447136954489, 588186226489, 19753091358025, 31996727599225, 311995522926025, 1975308691358025
Offset: 1
0 is a term because 0 + 1 = 1. The result is another square.
25 is a term because 25 + 11 = 36. The result is another square.
289 is a term because 289 + 111 = 400. The result is another square.
-
f:= proc(d,q,m) local x,y;
if d < q/d then return NULL fi;
x:= ((d-q/d)/2)^2;
if x >= 10^m and x < 10^(m+1) then x else NULL fi;
end proc:
R:= 0:
for m from 1 to 20 do
q:= (10^m-1)/9;
V:= sort(convert(map(f, numtheory:-divisors(q),q,m-1),list));
R:= R, op(V);
od:
R; # Robert Israel, Aug 21 2020
-
lista(limit)={for(k=0, sqrtint(limit), my(t=k^2); if(issquare(t + (10^if(t, 1+logint(t,10), 1)-1)/9), print1(t, ", ")))}
{ lista(10^12) } \\ Andrew Howroyd, Aug 11 2020
Showing 1-2 of 2 results.
Comments