A273256 Number of simple labeled graphs on n vertices with at most one nontrivial component and all vertex degrees are even.
1, 1, 1, 2, 8, 64, 1014, 32593, 2093589, 268333725, 68714765337, 35183979518038, 36028733659454920, 73786955927716463496, 302231441864128208088266, 2475880062024448199702310129, 40564819165779582804001294004849, 1329227995578862816338009185350962977, 87112285929737129482236375622145146977689
Offset: 0
Keywords
Examples
a(4) = 8 because there are 1+4+3=8 labelings on these three graphs 1) o o o o 2) o-o |/ o o 3) o-o | | o-o
References
- D. B. West, Introduction to Graph Theory, 2nd edition, Pearson Education, 2001, page 27.
Programs
-
Mathematica
nn = 18; Clear[g];g[z_] := Sum[2^Binomial[n - 1, 2] z^n/n!, {n, 1, nn}];Range[0, nn]! CoefficientList[Series[Exp[z] (Log[g[z] + 1] - z + 1), {z, 0, nn}], z]
Formula
E.g.f.: exp(x)*(log(A(x) + 1) - x + 1) where A(x) = Sum_{n>=1} 2^binomial(n-1,2)x^n/n!.
Comments