A273262 Irregular triangle read by rows: T(n,k) = sum of the elements of the k-th antidiagonal of the difference table of the divisors of n.
1, 1, 3, 1, 5, 1, 3, 7, 1, 9, 1, 3, 4, 13, 1, 13, 1, 3, 7, 15, 1, 5, 19, 1, 3, 10, 17, 1, 21, 1, 3, 4, 5, 11, 28, 1, 25, 1, 3, 16, 21, 1, 5, 7, 41, 1, 3, 7, 15, 31, 1, 33, 1, 3, 4, 13, 6, 59, 1, 37, 1, 3, 7, 3, 31, 21, 1, 5, 13, 53, 1, 3, 28, 29, 1, 45, 1, 3, 4, 5, 11, 4, 36, 39, 1, 9, 61, 1, 3, 34, 33, 1, 5, 19, 65
Offset: 1
Examples
Triangle begins: 1; 1, 3; 1, 5; 1, 3, 7; 1, 9; 1, 3, 4, 13; 1, 13; 1, 3, 7, 15; 1, 5, 19; 1, 3, 10, 17; 1, 21; 1, 3, 4, 5, 11, 28; 1, 25; 1, 3, 16, 21; 1, 5, 7, 41; 1, 3, 7, 15, 31; 1, 33; 1, 3, 4, 13, 6, 59; 1, 37; 1, 3, 7, 3, 31, 21; 1, 5, 13, 53; 1, 3, 28, 29; 1, 45; 1, 3, 4, 5, 11, 4, 36, 39; 1, 9, 61; 1, 3, 34, 33; 1, 5, 19, 65; ... For n = 18 the divisors of 18 are 1, 2, 3, 6, 9, 18, and the difference triangle of the divisors is 1, 2, 3, 6, 9, 18; 1, 1, 3, 3, 9; 0, 2, 0, 6; 2, -2, 6; -4, 8; 12; The antidiagonal sums give [1, 3, 4, 13, 6, 59] which is also the 18th row of the irregular triangle.
Crossrefs
Programs
-
Mathematica
Table[Map[Total, Table[#[[m - k + 1, k]], {m, Length@ #}, {k, m}], {1}] &@ NestWhileList[Differences, Divisors@ n, Length@ # > 1 &], {n, 27}] (* Michael De Vlieger, Jun 26 2016 *)
-
PARI
row(n) = {my(d = divisors(n)); my(nd = #d); my(m = matrix(#d, #d)); for (j=1, nd, m[1,j] = d[j];); for (i=2, nd, for (j=1, nd - i +1, m[i,j] = m[i-1,j+1] - m[i-1,j];);); vector(nd, i, sum(k=0, i-1, m[i-k, k+1]));} tabf(nn) = for (n=1, nn, print(row(n));); lista(nn) = for (n=1, nn, v = row(n); for (j=1, #v, print1(v[j], ", "));); \\ Michel Marcus, Jun 25 2016
Comments