cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273282 Largest prime not exceeding the geometric mean of all prime divisors of n counted with multiplicity.

Original entry on oeis.org

2, 3, 2, 5, 2, 7, 2, 3, 3, 11, 2, 13, 3, 3, 2, 17, 2, 19, 2, 3, 3, 23, 2, 5, 5, 3, 3, 29, 3, 31, 2, 5, 5, 5, 2, 37, 5, 5, 2, 41, 3, 43, 3, 3, 5, 47, 2, 7, 3, 7, 3, 53, 2, 7, 2, 7, 7, 59, 2, 61, 7, 3, 2, 7, 3, 67, 3, 7, 3, 71, 2, 73, 7, 3, 3, 7, 3, 79, 2, 3, 7
Offset: 2

Views

Author

Giuseppe Coppoletta, May 19 2016

Keywords

Comments

a(n) = n iff n is prime.
a(n) <= A079866(n) with equality iff A079866(n) is prime.

Examples

			a(46) = 5 because 5 is the greatest prime not bigger than sqrt(2*23).
For n = 5^3 * 11 * 89, a(n)=7 and A273283(n)=11 because A001222(n)=5 and 7 < n^(1/5) < 11.
		

Crossrefs

Programs

  • Mathematica
    a[n_] := NextPrime[ Floor[n^ (1/PrimeOmega[n])] + 1, -1]; a /@ Range[2, 100] (* Giovanni Resta, May 25 2016 *)
  • PARI
    a(n) = precprime(sqrtnint(n, bigomega(n))); \\ Michel Marcus, May 24 2016
  • Sage
    [previous_prime(floor(n^(1/sloane.A001222(n)))+1) for n in (2..100)]
    

Formula

For n>=2, a(n) = A007917(A079866(n)).