A273317 Irregular table read by rows: T(0,0) = 2 and T(n,2k) = T(n-1,k)+1, T(n,2k+1) = T(n-1,k)*(T(n-1,k)+1) for 0 <= k < 2^(n-1).
2, 3, 6, 4, 12, 7, 42, 5, 20, 13, 156, 8, 56, 43, 1806, 6, 30, 21, 420, 14, 182, 157, 24492, 9, 72, 57, 3192, 44, 1892, 1807, 3263442, 7, 42, 31, 930, 22, 462, 421, 176820, 15, 210, 183, 33306, 158, 24806, 24493, 599882556, 10, 90, 73, 5256, 58, 3306, 3193, 10192056
Offset: 0
Examples
The table begins: 2, 3, 6, 4, 12, 7, 42, 5, 20, 13, 156, 8, 56, 43, 1806, 6, 30, 21, 420, 14, 182, 157, 24492, 9, 72, 57, 3192, 44, 1892, 1807, 3263442,
Links
- Steven J. Kifowit, More Proofs of Divergence of the Harmonic Series.
- J. C. Owings, Jr., Another Proof of the Egyptian Fraction Theorem, Amer. Math. Monthly, 75(7) (1968), 777-778.
Programs
-
Maple
A273317 := proc(n,j) if n = 0 then 2 ; elif type(j,'even') then 1+procname(n-1,j/2) ; else procname(n-1,floor(j/2)) ; %*(%+1) ; end if; end proc: # R. J. Mathar, May 20 2016
-
Sage
def T(n,j): if n==0: return 2 if j%2==0: return T(n-1,floor(j/2))+1 else: t=T(n-1,floor(j/2)) return t*(t+1) S=[[T(n,k) for k in [0..2^n-1]] for n in [0..10]] [x for sublist in S for x in sublist]
Formula
T(0,0) = 2, and T(n,2k) = T(n-1,k)+1, T(n,2k+1) = T(n-1,k)*(T(n-1,k)+1) for 0 <= k < 2^(n-1).
Sum_{a in row(n)} 1/a = 1/2 for all n.
Comments