cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273322 Wiener index of graphs of f.c.c. unit cells in a line = Sum of distances in face-centered cubic grid unit cells connected in a row.

Original entry on oeis.org

150, 536, 1336, 2712, 4826, 7840, 11916, 17216, 23902, 32136, 42080, 53896, 67746, 83792, 102196, 123120, 146726, 173176, 202632, 235256, 271210, 310656, 353756, 400672, 451566, 506600, 565936, 629736, 698162, 771376, 849540, 932816, 1021366
Offset: 1

Views

Author

Benedek Nagy, May 20 2016

Keywords

Programs

  • Mathematica
    Table[27 n^3 + 45 n^2 + 62 n + 16, {n, 33}] (* or *)
    Rest@ CoefficientList[Series[2 x (75 - 32 x + 46 x^2 - 8 x^3)/(1 - x)^4, {x, 0, 33}], x] (* Michael De Vlieger, May 20 2016 *)
    LinearRecurrence[{4,-6,4,-1},{150,536,1336,2712},40] (* Harvey P. Dale, Dec 04 2018 *)
  • PARI
    Vec(2*x*(75-32*x+46*x^2-8*x^3)/(1-x)^4 + O(x^50)) \\ Colin Barker, May 20 2016

Formula

a(n) = 27*n^3 + 45*n^2 + 62*n + 16.
From Colin Barker, May 20 2016: (Start)
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 4.
G.f.: 2*x*(75 - 32*x + 46*x^2 - 8*x^3) / (1-x)^4.
(End)