cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273325 Number of endofunctions on [2n] such that the minimal cardinality of the nonempty preimages equals n.

Original entry on oeis.org

1, 2, 36, 300, 1960, 11340, 60984, 312312, 1544400, 7438860, 35103640, 162954792, 746347056, 3380195000, 15164074800, 67476121200, 298135873440, 1309153089420, 5717335239000, 24847720451400, 107520292479600, 463440029892840, 1990477619679120, 8521600803066000
Offset: 0

Views

Author

Alois P. Heinz, May 20 2016

Keywords

Comments

a(0) = 1 by convention.

Examples

			a(1) = 2: 12, 21.
a(2) = 36: 1122, 1133, 1144, 1212, 1221, 1313, 1331, 1414, 1441, 2112, 2121, 2211, 2233, 2244, 2323, 2332, 2424, 2442, 3113, 3131, 3223, 3232, 3311, 3322, 3344, 3434, 3443, 4114, 4141, 4224, 4242, 4334, 4343, 4411, 4422, 4433.
		

Crossrefs

Programs

  • Maple
    a:= proc(n) option remember; `if`(n<2, 2^n,
           2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)))
        end:
    seq(a(n), n=0..30);
  • Mathematica
    a[n_] := (2*n^3 + n^2 - n) * CatalanNumber[n]; a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Mar 12 2023 *)

Formula

G.f.: 1+(8*x+1)*2*x/(1-4*x)^(5/2).
a(n) = C(2*n,n)*C(2*n,2) for n>0, a(0)=1.
a(n) = 2*C(2*(n-1),n-1)*(2*n-1)^2, a(0)=1.
a(n) = 2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)) for n>1, a(n) = 2^n for n=0..1.
a(n) = A245687(2n,n).
a(n) = A000108(n)*A213820(n) = 2*A000108(n)*A002414(n) for n>0, a(0)=1.
Sum_{n>=0} 1/a(n) = 1 - log(sqrt(3)+2)*Pi/6 + 4*G/3, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 12 2023