A273325 Number of endofunctions on [2n] such that the minimal cardinality of the nonempty preimages equals n.
1, 2, 36, 300, 1960, 11340, 60984, 312312, 1544400, 7438860, 35103640, 162954792, 746347056, 3380195000, 15164074800, 67476121200, 298135873440, 1309153089420, 5717335239000, 24847720451400, 107520292479600, 463440029892840, 1990477619679120, 8521600803066000
Offset: 0
Examples
a(1) = 2: 12, 21. a(2) = 36: 1122, 1133, 1144, 1212, 1221, 1313, 1331, 1414, 1441, 2112, 2121, 2211, 2233, 2244, 2323, 2332, 2424, 2442, 3113, 3131, 3223, 3232, 3311, 3322, 3344, 3434, 3443, 4114, 4141, 4224, 4242, 4334, 4343, 4411, 4422, 4433.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
Programs
-
Maple
a:= proc(n) option remember; `if`(n<2, 2^n, 2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3))) end: seq(a(n), n=0..30);
-
Mathematica
a[n_] := (2*n^3 + n^2 - n) * CatalanNumber[n]; a[0] = 1; Array[a, 30, 0] (* Amiram Eldar, Mar 12 2023 *)
Formula
G.f.: 1+(8*x+1)*2*x/(1-4*x)^(5/2).
a(n) = C(2*n,n)*C(2*n,2) for n>0, a(0)=1.
a(n) = 2*C(2*(n-1),n-1)*(2*n-1)^2, a(0)=1.
a(n) = 2*(2*n-1)^2*a(n-1)/((n-1)*(2*n-3)) for n>1, a(n) = 2^n for n=0..1.
a(n) = A245687(2n,n).
Sum_{n>=0} 1/a(n) = 1 - log(sqrt(3)+2)*Pi/6 + 4*G/3, where G is Catalan's constant (A006752). - Amiram Eldar, Mar 12 2023
Comments