cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273344 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k levels. A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps; it is preceded and followed by either an up step or a down step.

Original entry on oeis.org

1, 1, 1, 3, 2, 6, 7, 14, 19, 2, 33, 53, 11, 79, 148, 47, 1, 194, 409, 181, 10, 482, 1137, 639, 69, 1214, 3159, 2166, 360, 6, 3090, 8793, 7110, 1646, 66, 7936, 24515, 22831, 6868, 490, 2, 20544, 68443, 72145, 26893, 2918, 44, 53545, 191367, 225138, 100598, 15085, 486, 140399, 535762, 695798, 363360, 70847, 3825
Offset: 2

Views

Author

Emeric Deutsch, May 21 2016

Keywords

Comments

Sum of entries in row n = A082582(n).

Examples

			Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] having 1, 0, 0, 1, 0 levels, respectively.
Triangle starts
1;
1,1;
3,2;
6,7;
14,19,2.
		

Crossrefs

Programs

  • Maple
    G := (1-2*z-z^2+2*z^3-2*t*z^3-sqrt((1-z)*(1-3*z-z^2+3*z^3-4*t*z^3+4*z^4 -4*t*z^4-4*z^5+8*t*z^5-4*t^2*z^5)))/(2*z*(1-z+t*z)): Gser := simplify(series(G, z = 0, 25)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t, w) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+ `if`(y<1, 0,
          `if`(w=1, z, 1)*b(n-1, y, 0, min(w+1, 2)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=2..20);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    b[n_, y_, t_, w_] := b[n, y, t, w] = Expand[If[n == 0, (1 - t), If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, If[w == 1, z, 1]*b[n - 1, y, 0, Min[w + 1, 2]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *)

Formula

T(n,0) = A025243(n+1).
Sum(k*T(n,k), k>=1) = A273345(n).
G.f.: G(t,z) = (1-2z-z^2+2z^3-2tz^3-sqrt((1-z)(1-3z-z^2+3z^3-4tz^3+4z^4-4tz^4-4z^5+8tz^5-4t^2z^5)))/(2z(1-z+tz)); z marks semiperimeter, t marks levels. See eq. (2.4) in the Blecher et al. Ars. Math. Contemp. reference (set x = z, y = z, w = t).