A273344 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k levels. A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps; it is preceded and followed by either an up step or a down step.
1, 1, 1, 3, 2, 6, 7, 14, 19, 2, 33, 53, 11, 79, 148, 47, 1, 194, 409, 181, 10, 482, 1137, 639, 69, 1214, 3159, 2166, 360, 6, 3090, 8793, 7110, 1646, 66, 7936, 24515, 22831, 6868, 490, 2, 20544, 68443, 72145, 26893, 2918, 44, 53545, 191367, 225138, 100598, 15085, 486, 140399, 535762, 695798, 363360, 70847, 3825
Offset: 2
Examples
Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] having 1, 0, 0, 1, 0 levels, respectively. Triangle starts 1; 1,1; 3,2; 6,7; 14,19,2.
Links
- Alois P. Heinz, Rows n = 2..250, flattened
- A. Blecher, C. Brennan, and A. Knopfmacher, Levels in bargraphs, Ars Math. Contemp., 9, 2015, 297-310.
- A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
Programs
-
Maple
G := (1-2*z-z^2+2*z^3-2*t*z^3-sqrt((1-z)*(1-3*z-z^2+3*z^3-4*t*z^3+4*z^4 -4*t*z^4-4*z^5+8*t*z^5-4*t^2*z^5)))/(2*z*(1-z+t*z)): Gser := simplify(series(G, z = 0, 25)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, y, t, w) option remember; expand( `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0))+ `if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+ `if`(y<1, 0, `if`(w=1, z, 1)*b(n-1, y, 0, min(w+1, 2))))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)): seq(T(n), n=2..20); # Alois P. Heinz, Jun 04 2016
-
Mathematica
b[n_, y_, t_, w_] := b[n, y, t, w] = Expand[If[n == 0, (1 - t), If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, If[w == 1, z, 1]*b[n - 1, y, 0, Min[w + 1, 2]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *)
Formula
T(n,0) = A025243(n+1).
Sum(k*T(n,k), k>=1) = A273345(n).
G.f.: G(t,z) = (1-2z-z^2+2z^3-2tz^3-sqrt((1-z)(1-3z-z^2+3z^3-4tz^3+4z^4-4tz^4-4z^5+8tz^5-4t^2z^5)))/(2z(1-z+tz)); z marks semiperimeter, t marks levels. See eq. (2.4) in the Blecher et al. Ars. Math. Contemp. reference (set x = z, y = z, w = t).
Comments