cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273345 Number of levels in all bargraphs having semiperimeter n (n>=2). A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps; it is preceded and followed by either an up step or a down step.

Original entry on oeis.org

0, 1, 2, 7, 23, 75, 245, 801, 2622, 8595, 28215, 92751, 305304, 1006207, 3320071, 10966741, 36261414, 120010103, 397528422, 1317860989, 4372180109, 14515485973, 48222552640, 160300772873, 533176676911, 1774359032599, 5907894024527, 19680307851415, 65588436120988, 218679463049627
Offset: 2

Views

Author

Emeric Deutsch, May 21 2016

Keywords

Examples

			a(4) = 2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]; they have 1, 0, 0, 1, 0 levels, respectively.
		

Crossrefs

Programs

  • Maple
    g := (1/2)*(1-z)^2*(1-2*z-z^2-sqrt((1-z)*(1-3*z-z^2-z^3)))/sqrt((1-z)*(1-3*z-z^2-z^3)): gser := series(g,z = 0,45): seq(coeff(gser, z, n), n = 2 .. 42);

Formula

a(n) = Sum(k*A273344(n,k), k>=0).
G.f. g(z) = (1-z)^2 (1-2z-z^2-sqrt((1-z)(1-3z-z^2-z^3)))/(2 sqrt((1-z)(1-3z-z^2-z^3))).
D-finite with recurrence n*a(n) +2*(-3*n+4)*a(n-1) +(9*n-28)*a(n-2) +2*a(n-3) +(-n+16)*a(n-4) +2*(-n+7)*a(n-5) +(-n+8)*a(n-6)=0. - R. J. Mathar, Jun 02 2016