A273344
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k levels. A level in a bargraph is a maximal sequence of two or more adjacent horizontal steps; it is preceded and followed by either an up step or a down step.
Original entry on oeis.org
1, 1, 1, 3, 2, 6, 7, 14, 19, 2, 33, 53, 11, 79, 148, 47, 1, 194, 409, 181, 10, 482, 1137, 639, 69, 1214, 3159, 2166, 360, 6, 3090, 8793, 7110, 1646, 66, 7936, 24515, 22831, 6868, 490, 2, 20544, 68443, 72145, 26893, 2918, 44, 53545, 191367, 225138, 100598, 15085, 486, 140399, 535762, 695798, 363360, 70847, 3825
Offset: 2
Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] having 1, 0, 0, 1, 0 levels, respectively.
Triangle starts
1;
1,1;
3,2;
6,7;
14,19,2.
- Alois P. Heinz, Rows n = 2..250, flattened
- A. Blecher, C. Brennan, and A. Knopfmacher, Levels in bargraphs, Ars Math. Contemp., 9, 2015, 297-310.
- A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
-
G := (1-2*z-z^2+2*z^3-2*t*z^3-sqrt((1-z)*(1-3*z-z^2+3*z^3-4*t*z^3+4*z^4 -4*t*z^4-4*z^5+8*t*z^5-4*t^2*z^5)))/(2*z*(1-z+t*z)): Gser := simplify(series(G, z = 0, 25)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t, w) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0))+
`if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+ `if`(y<1, 0,
`if`(w=1, z, 1)*b(n-1, y, 0, min(w+1, 2)))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
seq(T(n), n=2..20); # Alois P. Heinz, Jun 04 2016
-
b[n_, y_, t_, w_] := b[n, y, t, w] = Expand[If[n == 0, (1 - t), If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, If[w == 1, z, 1]*b[n - 1, y, 0, Min[w + 1, 2]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *)
A277973
Sum of horizontal positions of the first peak in all bargraphs of semiperimeter n.
Original entry on oeis.org
0, 0, 0, 1, 6, 25, 91, 311, 1029, 3346, 10778, 34544, 110444, 352785, 1126885, 3601617, 11521648, 36899528, 118322448, 379908707, 1221423149, 3932113059, 12675055399, 40909511880, 132200481507, 427718677728, 1385419058692, 4492446685542, 14582927712740, 47385785436719
Offset: 1
For n = 4, a(4) = 1, as only the bargraph with first column of height one and second column of height two has horizontal position 1, all other cases are zero.
- Andrew Howroyd, Table of n, a(n) for n = 1..500
- A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
A274486
Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k horizontal segments (n>=2, k>=1). A horizontal segment is a maximal sequence of adjacent horizontal steps (1,0).
Original entry on oeis.org
1, 2, 3, 2, 4, 8, 1, 5, 20, 10, 6, 40, 45, 6, 7, 70, 140, 56, 2, 8, 112, 350, 280, 44, 9, 168, 756, 1008, 366, 20, 10, 240, 1470, 2940, 1920, 320, 5, 11, 330, 2640, 7392, 7590, 2552, 190, 12, 440, 4455, 16632, 24684, 13904, 2445, 70
Offset: 2
Row 4 is 3,2 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1],[1,2],[2,1],[2,2],[3] and, clearly, they have 1,2,2,1,1 horizontal segments.
Triangle starts
1;
2;
3,2;
4,8,1;
5,20,10;
6,40,45,6.
- Alois P. Heinz, Rows n = 2..200, flattened
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
-
G := ((1-2*z+z^2-2*t*z^2-sqrt((1-z)*((1-z)^3-4*t*z^2*(1-z+t*z))))*(1/2))/(t*z): Gser := simplify(series(G,z = 0,23)): for n from 2 to 18 do P[n] := sort(expand(coeff(Gser,z,n))) end do: for n from 2 to 18 do seq(coeff(P[n],t,j), j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
# second Maple program:
b:= proc(n, y, t) option remember; expand(
`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1))+
`if`(t>0 or y<2, 0, b(n, y-1, -1))+
`if`(y<1, 0, b(n-1, y, 0)*`if`(t=0, 1, z))))
end:
T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)):
seq(T(n), n=2..20); # Alois P. Heinz, Jun 27 2016
-
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]*If[t == 0, 1, z]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 20}] // Flatten (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)
A277999
Sum of distances between leftmost and rightmost peaks in all bargraphs of semiperimeter n.
Original entry on oeis.org
0, 0, 0, 0, 0, 1, 9, 53, 261, 1165, 4887, 19642, 76519, 291095, 1086946, 3998430, 14530223, 52272218, 186467253, 660449671, 2325124444, 8143334776, 28393762841, 98621419068, 341403900888, 1178425064256, 4057244213071, 13937739553781, 47786215201214, 163554669548711
Offset: 1
a(6)=1 since the bargraph with column heights 2,1,2 has a distance of 1 between first and last peak. All other bargraphs of semiperimeter 6 have at most one peak, hence 0 difference.
- A. Blecher, C. Brennan, and A. Knopfmacher, Peaks in bargraphs, Trans. Royal Soc. South Africa, 71, No. 1, 2016, 97-103.
-
my(x = 'x + O('x^30)); sqx = sqrt(x^4+2*x^2-4*x+1); concat(vector(5), Vec(-(4*x^6*(3-2*x^3+3*x^4 - sqx + x^2*(4-3*sqx) + 2*x*(sqx - 4))/((x^2-3*x+1)*sqx*(-1+2*x+x^2-sqx)^3)))) \\ Michel Marcus, Feb 25 2019
Showing 1-4 of 4 results.
Comments