cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273346 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having area k (n>=2, k>=1).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 1, 0, 0, 0, 7, 4, 2, 0, 0, 0, 0, 12, 9, 9, 4, 1, 0, 0, 0, 0, 0, 21, 18, 22, 18, 12, 4, 2, 0, 0, 0, 0, 0, 0, 37, 37, 47, 45, 46, 29, 20, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 65, 76, 103, 100, 116, 100, 89, 60, 43, 24, 12, 4, 2
Offset: 2

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Comments

Number of entries in row n is floor(n^2/4) = A002620(n).
Sum of entries in row n = A082582(n).
Sum(k*T(n,k),k>=1) = A273347(n).
Sum(T(n,k), n>=2) = 2^{n-1}.
Sum(n*T(n,k), n>=2) = A273348(k) = (15k2^k+29*2^k-2(-1)^k-18)/36.

Examples

			Row 4 is 0,0,4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the corresponding areas are 3,3,3,4,3.
Triangle starts
  1;
  0,  2;
  0,  0,  4,  1;
  0,  0,  0,  7,  4,  2;
  0,  0,  0,  0, 12,  9,  9,  4,  1;
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Programs

  • Maple
    p:= proc(z,q,n) options operator, arrow: product(1-z*q^(k-1), k = 1 .. n) end proc: G := z*(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i)*p(z*t, t, i+1)), i = 0 .. 20))/(1-(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i+1)*p(z*t, t, i)), i = 0 .. 20))): Gser := simplify(series(G,z=0,15)): for n from 2 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 14 do seq(coeff(P[n],t,j),j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(`if`(n=0, 1-t,
          `if`(t<0, 0, b(n-1, y+1, 1))+ `if`(t>0 or y<2, 0,
           b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)*z^y)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)):
    seq(T(n), n=2..14);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 14}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,z), where t marks area and z marks semiperimeter, is given in the Maple program; it is obtained from eq. (2.14) of the Blecher et al reference by setting x=z, y=z, q=t.