cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A273346 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having area k (n>=2, k>=1).

Original entry on oeis.org

1, 0, 2, 0, 0, 4, 1, 0, 0, 0, 7, 4, 2, 0, 0, 0, 0, 12, 9, 9, 4, 1, 0, 0, 0, 0, 0, 21, 18, 22, 18, 12, 4, 2, 0, 0, 0, 0, 0, 0, 37, 37, 47, 45, 46, 29, 20, 9, 4, 1, 0, 0, 0, 0, 0, 0, 0, 65, 76, 103, 100, 116, 100, 89, 60, 43, 24, 12, 4, 2
Offset: 2

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Comments

Number of entries in row n is floor(n^2/4) = A002620(n).
Sum of entries in row n = A082582(n).
Sum(k*T(n,k),k>=1) = A273347(n).
Sum(T(n,k), n>=2) = 2^{n-1}.
Sum(n*T(n,k), n>=2) = A273348(k) = (15k2^k+29*2^k-2(-1)^k-18)/36.

Examples

			Row 4 is 0,0,4,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and, clearly, the corresponding areas are 3,3,3,4,3.
Triangle starts
  1;
  0,  2;
  0,  0,  4,  1;
  0,  0,  0,  7,  4,  2;
  0,  0,  0,  0, 12,  9,  9,  4,  1;
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Programs

  • Maple
    p:= proc(z,q,n) options operator, arrow: product(1-z*q^(k-1), k = 1 .. n) end proc: G := z*(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i)*p(z*t, t, i+1)), i = 0 .. 20))/(1-(sum(z^(i+1)*(z-1)^i*t^binomial(i+2, 2)/(p(t, t, i+1)*p(z*t, t, i)), i = 0 .. 20))): Gser := simplify(series(G,z=0,15)): for n from 2 to 14 do P[n] := sort(expand(coeff(Gser, z, n))) end do: for n from 2 to 14 do seq(coeff(P[n],t,j),j = 1 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t) option remember; expand(`if`(n=0, 1-t,
          `if`(t<0, 0, b(n-1, y+1, 1))+ `if`(t>0 or y<2, 0,
           b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)*z^y)))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=1..degree(p)))(b(n, 0$2)):
    seq(T(n), n=2..14);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1-t, If[t<0, 0, b[n-1, y+1, 1]] + If[t>0 || y<2, 0, b[n, y-1, -1]] + If[y<1, 0, b[n-1, y, 0]*z^y]]]; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 1, Exponent[p, z]}]][b[n, 0, 0]]; Table[T[n], {n, 2, 14}] // Flatten (* Jean-François Alcover, Nov 28 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,z), where t marks area and z marks semiperimeter, is given in the Maple program; it is obtained from eq. (2.14) of the Blecher et al reference by setting x=z, y=z, q=t.

A273348 The sum of the semiperimeters of the bargraphs of area n (n>=1).

Original entry on oeis.org

2, 6, 16, 39, 92, 211, 476, 1059, 2332, 5091, 11036, 23779, 50972, 108771, 231196, 489699, 1034012, 2177251, 4572956, 9582819, 20039452, 41826531, 87148316, 181287139, 376555292, 781072611, 1618069276, 3347986659, 6919669532, 14286731491, 29468247836, 60726065379, 125031270172, 257220819171, 528758195996
Offset: 1

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Examples

			a(4) = 39 because the 8 bargraphs of area 4 correspond to the compositions [2,2],[4],[3,1],[1,3],[2,1,1],[1,2,1],[1,1,2],[1,1,1,1] and the sum of their semiperimeters is 4 + 7*5 = 39.
		

Crossrefs

Programs

  • Maple
    a := proc(n) (5/12)*n*2^n+(29/36)*2^n-(1/18)*(-1)^n-1/2 end proc:
    seq(a(n), n = 1 .. 35);
  • Mathematica
    LinearRecurrence[{4, -3, -4, 4}, {2, 6, 16, 39}, 35] (* Jean-François Alcover, Nov 27 2017 *)
  • PARI
    first(n) = Vec(x*(2-2*x-2*x^2+x^3)/((1-x^2)*(1-2*x)^2) + O(x^(n+1))) \\ Iain Fox, Nov 27 2017

Formula

G.f.: g = t(2-2t-2t^2+t^3)/((1-t^2)(1-2t)^2).
a(n) = (15*n2^n+29*2^n-2(-1)^n-18)/36.
a(n) = Sum_{k>=2} k * A273346(k,n).

A274208 Sum of the areas of all bargraphs of site-perimeter n.

Original entry on oeis.org

0, 0, 0, 0, 1, 0, 4, 6, 14, 36, 77, 168, 395, 851, 1921, 4254, 9461, 20991, 46619, 103360, 229461, 508731, 1128706, 2503028, 5552197, 12313707, 27313442, 60581866, 134384684, 298097515, 661300177, 1467072716, 3254847737, 7221496901, 16023112774, 35553756328
Offset: 0

Views

Author

Alois P. Heinz, Jun 13 2016

Keywords

Comments

A bargraph is a polyomino whose bottom is a segment of the nonnegative x-axis and whose upper part is a lattice path starting at (0,0) and ending with its first return to the x-axis using steps U=(0,1), D=(0,-1) and H=(1,0), where UD and DU are not allowed.
The site-perimeter of a polyomino is the number of exterior cells having a common edge with at least one polyomino cell.
a(n)^(1/n) tends to 2.222118... . - Vaclav Kotesovec, Jun 26 2016

Crossrefs

Formula

a(n) = Sum_{k=floor((n-1)/2)..floor(((n-1)^2+3)/12)} k * A274207(n,k).
Showing 1-3 of 3 results.