cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273349 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k level steps (n>=2,k>=0). A level step in a bargraph is any pair of adjacent horizontal steps at the same height.

Original entry on oeis.org

1, 1, 1, 3, 1, 1, 6, 5, 1, 1, 14, 12, 7, 1, 1, 33, 34, 19, 9, 1, 1, 79, 95, 61, 27, 11, 1, 1, 194, 261, 193, 95, 36, 13, 1, 1, 482, 728, 585, 333, 136, 46, 15, 1, 1, 1214, 2022, 1797, 1091, 521, 184, 57, 17, 1, 1, 3090, 5634, 5439, 3629, 1821, 763, 239, 69, 19, 1, 1
Offset: 2

Views

Author

Emeric Deutsch, Jun 03 2016

Keywords

Comments

Number of entries in row n is n-1.
Sum of entries in row n = A082582(n).
T(n,0) = A025243(n+1).
Sum(k*T(n,k),k>=0) = A271943(n-1). This implies that the number of level steps in all bargraphs of semiperimeter n is equal to the sum of the widths of all bargraphs of semiperimeter n-1.

Examples

			Row 4 is 3,1,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] which, clearly, have 2,0,0,1,0 level steps.
Triangle starts
1;
1,1;
3,1,1;
6,5,1,1;
14,12,7,1,1
		

References

  • A. Blecher, C. Brennan, and A. Knopfmacher, Combinatorial parameters in bargraphs (preprint).

Crossrefs

Programs

  • Maple
    G:=((1-t*z-z-2*z^2+t*z^2-sqrt((1-t*z-z-2*z^2+t*z^2)^2-4*z^3))*(1/2))/z: Gser:=simplify(series(G,z=0,21)): for n from 2 to 18 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 18 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t, w) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0))+
          `if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+ `if`(y<1, 0,
          `if`(w=1, z, 1)*b(n-1, y, 0, min(w+1, 1)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=2..18);  # Alois P. Heinz, Jun 04 2016
  • Mathematica
    b[n_, y_, t_, w_] := b[n, y, t, w] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1, 0]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, If[w == 1, z, 1]*b[n - 1, y, 0, Min[w + 1, 1]]]]];
    T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][ b[n, 0, 0, 0]];
    Table[T[n], {n, 2, 18}] // Flatten (* Jean-François Alcover, Jul 29 2016, after Alois P. Heinz *)

Formula

G.f.: G(t,z) = (1-tz-z-2z^2+tz^2-sqrt((1-z)(1-z-2tz-4z^2+t^2z^2+2tz^2-4z^3-t^2z^3+4tz^3)))/(2z) (z marks semiperimeter, t marks level steps; obtained from the expression for F in the Blecher et al. reference (Section 7.1) by setting x=z, y=z, w=t).