A273356 Numbers n such that n - 49, n - 1, n + 1, n + 49 are consecutive primes.
913638, 2763882, 4500492, 6220518, 6473148, 13884468, 15131982, 15729942, 19671930, 20494602, 21372888, 23791350, 25541028, 29535348, 30787788, 30906768, 32085372, 34128168, 34139802, 34550430, 35989980, 37473180, 37784310, 38106372
Offset: 1
Keywords
Examples
913638 is the average of the four consecutive primes 913589, 913637, 913639, 913687. 2763882 is the average of the four consecutive primes 2763833, 2763881, 2763883, 2763931.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
Mean/@Select[Partition[Prime[Range[2325200]],4,1],Differences[#]=={48,2,48}&] (* Harvey P. Dale, Feb 10 2024 *)
-
PARI
is(n)=isprime(n-1) && isprime(n+1) && precprime(n-2)==n-49 && nextprime(n+2)==n+49 \\ Charles R Greathouse IV, Jun 08 2016
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,60000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-49 and nextprime(i+1) == i+49: print (i,end=', ')
Comments