A273506 T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035
Offset: 1
Examples
n/m 1 2 3 4 ------------------------------ 1 | 1 2 | -1, 7 3 | 1, -1, 11 4 | -1, 319, -143, 715 ------------------------------ R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k + (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2) R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ... I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ... (2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ... From _Wolfdieter Lang_, Jun 11 2016 (Start): The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins: n\m 1 2 3 4 ... 1: 1/6 2: -1/45 7/72 3: 1/630 -1/30 11/144 4: -1/14175 319/56700 -143/3240 715/10368 ... , row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208, row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496, row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664, row 8: -1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872. ... (End)
Links
- Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
- Wolfdieter Lang, Remarks on this entry and A273507
- Wolfdieter Lang, Expansions for phase space coordinates for the plane pendulum
Crossrefs
Programs
-
Mathematica
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]] Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]] RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]}, Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][ Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]] RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a}, Coefficient[Coefficient[Rn/2/Sqrt[k], k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]] R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k] Flatten[Numerator@RCoefficients[10]] R2ToEllK[10]
Comments