cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 16 results. Next

A273496 Triangle read by rows: coefficients in the expansion cos(x)^n = (1/2)^n * Sum_{k=0..n} T(n,k) * cos(k*x).

Original entry on oeis.org

1, 0, 2, 2, 0, 2, 0, 6, 0, 2, 6, 0, 8, 0, 2, 0, 20, 0, 10, 0, 2, 20, 0, 30, 0, 12, 0, 2, 0, 70, 0, 42, 0, 14, 0, 2, 70, 0, 112, 0, 56, 0, 16, 0, 2, 0, 252, 0, 168, 0, 72, 0, 18, 0, 2, 252, 0, 420, 0, 240, 0, 90, 0, 20, 0, 2
Offset: 0

Views

Author

Bradley Klee, May 23 2016

Keywords

Comments

These coefficients are especially useful when integrating powers of cosine x (see examples).
Nonzero, even elements of the first column are given by A000984; T(2n,0) = binomial(2n,n).
For the rational triangles for even and odd powers of cos(x) see A273167/A273168 and A244420/A244421, respectively. - Wolfdieter Lang, Jun 13 2016
Mathematica needs no TrigReduce to integrate Cos[x]^k. See link. - Zak Seidov, Jun 13 2016

Examples

			n/k|  0   1   2   3   4   5   6
-------------------------------
0  |  1
1  |  0   2
2  |  2   0   2
3  |  0   6   0   2
4  |  6   0   8   0   2
5  |  0   20  0   10  0   2
6  |  20  0   30  0   12  0   2
-------------------------------
cos(x)^4 = (1/2)^4 (6 + 8 cos(2x) + 2 cos(4x)).
I4 = Int dx cos(x)^4 = (1/2)^4 Int dx ( 6 + 8 cos(2x) + 2 cos(4x) ) = C + 3/8 x + 1/4 sin(2x) + 1/32 sin(4x).
Over range [0,2Pi], I4 = (3/4) Pi.
		

Crossrefs

Programs

  • Mathematica
    T[MaxN_] := Function[{n}, With[
           {exp = Expand[Times[ 2^n, TrigReduce[Cos[x]^n]]]},
           Prepend[Coefficient[exp, Cos[# x]] & /@ Range[1, n],
            exp /. {Cos[_] -> 0}]]][#] & /@ Range[0, MaxN];Flatten@T[10]
    (* alternate program *)
    T2[MaxN_] := Function[{n}, With[{exp = Expand[(Exp[I x] + Exp[-I x])^n]}, Prepend[2 Coefficient[exp, Exp[I # x]] & /@ Range[1, n], exp /. {Exp[] -> 0}]]][#] & /@ Range[0, MaxN]; T2[10] // ColumnForm (* _Bradley Klee, Jun 13 2016 *)

Formula

From Robert Israel, May 24 2016: (Start)
T(n,k) = 0 if n-k is odd.
T(n,0) = binomial(n,n/2) if n is even.
T(n,k) = 2*binomial(n,(n-k)/2) otherwise. (End)

A273507 T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.

Original entry on oeis.org

6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1

Views

Author

Bradley Klee, May 23 2016

Keywords

Comments

Triangle read by rows ( see example ). The numerator triangle is A274076.
Comments of A273506 give a definition of the fraction triangle, which determines an arbitrary-precision solution to the simple pendulum equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1      2      3     4
------------------------------
1  | 6
2  | 45,    72
3  | 630,   30,    144
4  | 14175, 56700, 3240, 10368
------------------------------
		

Crossrefs

Numerators: A273506. Time Dependence: A274076, A274078, A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[
              Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    RCoefficients[n_] :=  With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
        Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
           Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator@RCoefficients[10]]

A274076 T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows ( see examples ). The denominators are given in A274078.
The rational triangle A273506 / A273507 gives the coefficients for an exact solution of the plane pendulum's phase space trajectory. Differential time dependence for this solution also adheres to the simple form of a triangular summation: dt = dQ(-1+ sum k^n * (T(n, m)/A274078(n, m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. Expanding powers of cosine ( Cf. A273496 ) it is relatively easy to integrate dt ( cf. A274130 ). One period of motion takes Q through the range [ 0 , -2 pi]. Integrating dt over this domain gives another (Cf. A273506) calculation of the series expansion for Elliptic K ( see examples and Mathematica function dtToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			The triangle T(n, m) begins:
n/m  1    2     3     4
------------------------------
1  | -2
2  |  2, -2
3  | -4,  8,  -20
4  |  2, -58,  14,  -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m    1        2         3       4
------------------------------------------
1  | -2/3
2  |  2/15,   -2/3
3  | -4/315,   8/27,   -20/27
4  |  2/2835, -58/945,  14/27,  -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k +  ((2/15) cos(Q)^6  - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) =  1 + (1/4) k + (9/64) k^2+ ...
		

Crossrefs

Denominators: A274078. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
    Flatten[Numerator[dtCoefficients[10]]]
    dtToEllK[5]

A274078 T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows (see example). Comments of A274076 give a definition of the fraction triangle, which determines to arbitrary precision the differential time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m|    1    2    3    4
---+---------------------
1  |    3;
2  |   15,   3;
3  |  315,  27,  27;
4  | 2835, 945,  27,  81;
		

Crossrefs

Numerators: A274076. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator[dtCoefficients[10]]]

A274130 Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The row length sequence is 2*n = A005843(n), n >= 1.The denominators are given in A274131.
The triangles A274076 and A274078 give the coefficients for the exact, differential time dependence of the plane pendulum's equations of motion. Integrating, we obtain time dependence as a Fourier sine series: t = -( (2/pi)K(k) Q + sum k^n * (T(n,m)/A274131(n,m)) * sin(2 m Q) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3,...,2 n. Combining the phase space trajectory and time dependence, it is possible to express Jacobian elliptic functions {cn,dn} in parametric form. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1     2     3      4    5   6 ...
-----------------------------------------
1  | 1    1
2  | 11   29    1      1
3  | 491  863   6571   4399  13  5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m    1          2           3             4            5         6
-----------------------------------------------------------------------------
1  |  1/6,      1/48
2  |  11/96,    29/960,    1/160,          1/1536
3  |  491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) =  1+(1/4)*k+...
		

Crossrefs

Denominators: A274131. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
    Flatten[Numerator[-tCoefficients[10]]]
    tToEllK[5]

A274131 Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows (see example). The row length sequence is 2*n = A005843(n), n >= 1.
The numerator triangle is A274130.
Comments of A274130 give a definition of the fraction triangle, which determines to arbitrary precision the time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1      2      3          4       5       6
------------------------------------------------------
1  | 6     48
2  | 96    960    160      1536
3  | 5760  30720  725760   1935360  34560   165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
		

Crossrefs

Numerators: A274130. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    Flatten[Denominator[-tCoefficients[10]]]

A276738 Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.

Original entry on oeis.org

-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1

Views

Author

Bradley Klee, Sep 16 2016

Keywords

Comments

Irregular triangle read by rows (see examples). Consider an arbitrary anharmonic oscillator with Hamiltonian energy: H=(1/2)*b^2=(1/2)*(p^2+q^2) + Sum_{i=3} 2*v_i*q^i, and a stable minimum at (p,q)=(0,0). The phase space trajectory can be written in polar phase space coordinates as (q,p) = (R(x)cos(x),R(x)sin(x))=(R(Q)Q,R(Q)P). The present triangle determines a power / Fourier series of R(Q): R(Q) = b * (1 + sum b^n*T(n,m)*f(n,m) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...A000041(n). The basis functions f(n,m) are constructed from partitions of "n" listed in reverse lexicographic order. Partition n=(z_1+z_2+...z_j) becomes 2*Q^((z_1+2)+(z_2+2)+...(z_j+2))*v_{z_1+2}*v_{z_2+2}*...*v_{z_j+2} (see examples). This sequence transforms into A273506/A273507 by setting v_i=0 for odd i, v_i:=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4     5     6      7
--------------------------------------------
1  | -1
2  | -1   5
3  | -1   12   -32
4  | -1   14    7   -126   231
5  | -1   16    16  -160  -160   1280  -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q]   = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
      Coefficient[term, #] & /@ basis[n]]
    With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]

A276816 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.

Original entry on oeis.org

-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814 and differential time dependence A276815. We calculate the period K = Int dt over the range [2*Pi, 0], trivial to compute from A276815 using A273496. Then K/(2*Pi) = 1 + sum b^(2n)*T(n,m)*f'(n,m); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(2n), and f'(n,m) = f(2n,m) of A276738 with Q=1/2. Choosing one point from the infinite dimensional coefficient space--v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise--setting b^2 = 4*k, and summing over the entire table obtains the EllipticK expansion 2*A038534/A038533. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m   1     2     3         4         5
------------------------------------------
1  | -24   480
2  | -120  6720  3360   -241920   1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
		

Crossrefs

Programs

  • Mathematica
    RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
    RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
    Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
    dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
    Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
    RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
    tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :>  Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
    RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
    tri7 = tri[7]; tri7 // TableForm
    PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
      2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
    {#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
    PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]

A276817 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.

Original entry on oeis.org

-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows (see examples).
Consider an axially symmetric oscillator in two dimensions with polar coordinates ( r, y ). By conservation of angular momentum, replace the cyclic angle coordinate y with dy/dt = 1/r^2. The system becomes one-dimensional in r, with an effective potential including the 1/r^2 term. Assume that the effective potential has a minimum around r0 and apply a linear transform r --> q = r-r0. Radial oscillations around the effective potential minimum follow the exact solution of A276738, A276814, A276815, A276816. Now dy = dx (dy/dt) / (dx/dt) = dx * Sum b^n*T(n,m)*F(n,m), with n=1,2,3.... and m=1,2,3...A000070(n). Basis functions F(n,m) are an ordered union over A276738's f(n,m): F(n,m')={ (1/r0^2)*(Q/r0)^n } & Append_{i=1..n}_{m=1..A000041(n)} (1/2/r0^2)*(Q/r0)^(n - i)*f(i,m), where each successive term f(i,m) is appended such that index m' inherets the ordering of each m index (see examples). Integrating dx over a range of 2 Pi loses all odd rows, as in A276815 / A276816. This sequence is a useful tool in classical and relativistic astronomy (follow links to Wolfram demonstrations).

Examples

			n/m   1   2    3    4      5     6    7
------------------------------------------
0  | -1
1  |  2   6
2  | -3  -16   8   -48
3  |  4   30  -20   140   10   -140   420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
		

References

  • R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
  • J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
    dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
    TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
    With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
    (*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
    (*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
    (*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}

A274659 Triangle entry T(n, m) gives the m-th contribution T(n, m)*sin((2*m+1)*v) to the coefficient of q^n in the Fourier expansion of Jacobi's elliptic sn(u|k) function when expressed in the variables v = u/(2*K(k)/Pi) and q, the Jacobi nome, written as series in (k/4)^2. K is the real quarter period of elliptic functions.

Original entry on oeis.org

1, 1, 1, -1, 0, 1, -1, -2, 0, 1, 2, 1, -2, 0, 1, 2, 3, 0, -2, 0, 1, -4, -2, 3, 0, -2, 0, 1, -4, -5, 1, 3, 0, -2, 0, 1, 7, 3, -6, 0, 3, 0, -2, 0, 1, 7, 9, -2, -6, 0, 3, 0, -2, 0, 1, -11, -5, 11, 1, -6, 0, 3, 0, -2, 0, 1, -11, -15, 3, 11, 0, -6, 0, 3, 0, -2, 0, 1, 17, 9, -17, -2, 11, 0, -6, 0, 3, 0, -2, 0, 1
Offset: 0

Views

Author

Wolfdieter Lang, Jul 18 2016

Keywords

Comments

If one takes the row polynomials as R(n, x) = Sum_{m=0..n} T(n, m)*x^(2*m+1), n >= 0, Jacobi's elliptic sn(u|k) function in terms of the new variables v and q becomes sn(u|k) = Sum_{n>=0} R(n, x)*q^n, if one replaces in R(n, x) x^j by sin(j*v).
v=v(u,k^2) and q=q(k^2) are computed with the help of A038534/A056982 for (2/Pi)*K and A002103 for q expanded in powers of (k/4)^2.
A test for sn(u|k) with u = 1, k = sqrt(1/2), that is v approximately 0.8472130848 and q approximately 0.04321389673, with rows n=0..10 (q powers not exceeding 10) gives 0.8030018002 to be compared with sn(1|sqrt(1/2)) approximately 0.8030018249.
For the derivation of the Fourier series formula of sn given in Abramowitz-Stegun (but there the notation sn(u|m=k^2) is used for sn(u|k)) see, e.g., Whittaker and Watson, p. 511 or Armitage and Eberlein, Exercises on p. 55.
For the cn expansion see A274661.
See also the W. Lang link, equations (34) and (35).

Examples

			The triangle T(n, m) begins:
      m  0   1  2  3  4  5  6  7  8  9 10 11
n\ 2m+1  1   3  5  7  9 11 13 15 17 19 21 23
0:       1
1:       1   1
2:      -1   0  1
3:      -1  -2  0  1
4:       2   1 -2  0  1
5:       2   3  0 -2  0  1
6:      -4  -2  3  0 -2  0  1
7:      -4  -5  1  3  0 -2  0  1
8:       7   3 -6  0  3  0 -2  0  1
9:       7   9 -2 -6  0  3  0 -2  0  1
10:    -11  -5 11  1 -6  0  3  0 -2  0  1
11:    -11 -15  3 11  0 -6  0  3  0 -2  0  1
...
T(4, 0) = 2 from the x^1 term in b(0, x)*a(4) + b(2, x)*a(2) + b(4, x)*a(0), that is x^1*3 + x^1*(-2) + x^1*1 = +2*x^1.
n=4: R(4, x) = 2*x^1 + 1*x^3 - 2*x^5 + 0*x^7 + 1*x^9, that is the sn(u|k) contribution of order q^4 in the new variables v and q is (2*sin(1*v) + 1*sin(3*v) - 2*sin(5*v) + 1*sin(9*v))*q^4.
		

References

  • J. V. Armitage and W. F. Eberlein, Elliptic Functions, London Mathematical Society, Student Texts 67, Cambridge University Press, 2006.
  • E. T. Whittaker and G. N. Watson, A Course of Modern Analysis, fourth edition, reprinted, 1958, Cambridge at the University Press.

Crossrefs

Formula

T(n, m) = [x^(2*m+1)]Sum_{j=0..n} b(j, x)*a(n-j), with a(k) = A274621(k/2) if k is even and a(k) = 0 if k is odd, and b(j, x) = Sum_{r | 2*j+1} x^r = Sum_{k=1..A099774(j+1)} x^(A274658(j, k)), for j >= 0.
Showing 1-10 of 16 results. Next