cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A273506 T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.

Original entry on oeis.org

1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035
Offset: 1

Views

Author

Bradley Klee, May 23 2016

Keywords

Comments

Triangle read by rows ( see examples ). The phase space trajectory of a simple pendulum can be written as (q,p) = (R(Q)cos(Q),R(Q)sin(Q)), with scaled, canonical coordinates q and p. The present triangle and A273507 determine a power / Fourier series of R(Q): R(Q) = sqrt(4 *k) * (1 + sum k^n * (A273506(n,m)/A273507(n,m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. The period of an oscillator can be computed by T(k) = dA/dE, where A is the phase area enclosed by the phase space trajectory of conserved, total energy E. As we choose expansion parameter "k" proportional to E, the series expansion of the complete elliptic integral of the first kind follows from T(k) with very little technical difficulty ( see examples and Mathematica function R2ToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).
For some remarks on this pendulum problem and an alternative way to compute a(n,m) / A273507(n,m) using Lagrange inversion see the two W. Lang links. - Wolfdieter Lang, Jun 11 2016

Examples

			n/m  1    2     3     4
------------------------------
1  |  1
2  | -1,  7
3  |  1, -1,    11
4  | -1,  319, -143, 715
------------------------------
R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k +  (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2)
R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ...
I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ...
(2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ...
From _Wolfdieter Lang_, Jun 11 2016 (Start):
The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins:
n\m   1          2          3         4   ...
1:   1/6
2: -1/45        7/72
3:  1/630      -1/30      11/144
4: -1/14175   319/56700 -143/3240  715/10368
... ,
row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208,
row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496,
row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664,
row 8:
-1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872.
... (End)
		

Crossrefs

Denominators: A273507. Time Dependence: A274076, A274078, A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    RCoefficients[n_] :=  With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
        Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
           Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k]
    Flatten[Numerator@RCoefficients[10]]
    R2ToEllK[10]

A273507 T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.

Original entry on oeis.org

6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1

Views

Author

Bradley Klee, May 23 2016

Keywords

Comments

Triangle read by rows ( see example ). The numerator triangle is A274076.
Comments of A273506 give a definition of the fraction triangle, which determines an arbitrary-precision solution to the simple pendulum equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1      2      3     4
------------------------------
1  | 6
2  | 45,    72
3  | 630,   30,    144
4  | 14175, 56700, 3240, 10368
------------------------------
		

Crossrefs

Numerators: A273506. Time Dependence: A274076, A274078, A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[
              Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    RCoefficients[n_] :=  With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
        Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
           Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator@RCoefficients[10]]

A274076 T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows ( see examples ). The denominators are given in A274078.
The rational triangle A273506 / A273507 gives the coefficients for an exact solution of the plane pendulum's phase space trajectory. Differential time dependence for this solution also adheres to the simple form of a triangular summation: dt = dQ(-1+ sum k^n * (T(n, m)/A274078(n, m)) * cos(Q)^(2(n+m)) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...n. Expanding powers of cosine ( Cf. A273496 ) it is relatively easy to integrate dt ( cf. A274130 ). One period of motion takes Q through the range [ 0 , -2 pi]. Integrating dt over this domain gives another (Cf. A273506) calculation of the series expansion for Elliptic K ( see examples and Mathematica function dtToEllK ). For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			The triangle T(n, m) begins:
n/m  1    2     3     4
------------------------------
1  | -2
2  |  2, -2
3  | -4,  8,  -20
4  |  2, -58,  14,  -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m    1        2         3       4
------------------------------------------
1  | -2/3
2  |  2/15,   -2/3
3  | -4/315,   8/27,   -20/27
4  |  2/2835, -58/945,  14/27,  -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k +  ((2/15) cos(Q)^6  - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) =  1 + (1/4) k + (9/64) k^2+ ...
		

Crossrefs

Denominators: A274078. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
    Flatten[Numerator[dtCoefficients[10]]]
    dtToEllK[5]

A274078 T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.

Original entry on oeis.org

3, 15, 3, 315, 27, 27, 2835, 945, 27, 81, 155925, 2025, 2025, 135, 27, 6081075, 779625, 30375, 405, 243, 243, 638512875, 212837625, 654885, 42525, 8505, 1215, 729, 10854718875, 638512875, 58046625, 4465125, 127575, 3645, 729, 729
Offset: 1

Views

Author

Bradley Klee, Jun 09 2016

Keywords

Comments

Triangle read by rows (see example). Comments of A274076 give a definition of the fraction triangle, which determines to arbitrary precision the differential time dependence for the time-independent solution (cf. A273506, A273507) of the plane pendulum's equations of motion. For more details see "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m|    1    2    3    4
---+---------------------
1  |    3;
2  |   15,   3;
3  |  315,  27,  27;
4  | 2835, 945,  27,  81;
		

Crossrefs

Numerators: A274076. Phase Space Trajectory: A273506, A273507. Time Dependence: A274130, A274131. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    dtCoefficients[n_] :=  With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
    Flatten[Denominator[dtCoefficients[10]]]

A274130 Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.

Original entry on oeis.org

1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1

Views

Author

Bradley Klee, Jun 10 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The row length sequence is 2*n = A005843(n), n >= 1.The denominators are given in A274131.
The triangles A274076 and A274078 give the coefficients for the exact, differential time dependence of the plane pendulum's equations of motion. Integrating, we obtain time dependence as a Fourier sine series: t = -( (2/pi)K(k) Q + sum k^n * (T(n,m)/A274131(n,m)) * sin(2 m Q) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3,...,2 n. Combining the phase space trajectory and time dependence, it is possible to express Jacobian elliptic functions {cn,dn} in parametric form. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n\m  1     2     3      4    5   6 ...
-----------------------------------------
1  | 1    1
2  | 11   29    1      1
3  | 491  863   6571   4399  13  5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m    1          2           3             4            5         6
-----------------------------------------------------------------------------
1  |  1/6,      1/48
2  |  11/96,    29/960,    1/160,          1/1536
3  |  491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) =  1+(1/4)*k+...
		

Crossrefs

Denominators: A274131. Phase Space Trajectory: A273506, A273507. Time Dependence: A274076, A274078. Elliptic K: A038534, A056982. Cf. A000984, A001790, A038533, A046161, A273496.

Programs

  • Mathematica
    R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
    Vq[n_] :=  Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
    RRules[n_] :=  With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
    Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, Q] ->  Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
    dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
    t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
    tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
    tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
    Flatten[Numerator[-tCoefficients[10]]]
    tToEllK[5]

A276738 Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.

Original entry on oeis.org

-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1

Views

Author

Bradley Klee, Sep 16 2016

Keywords

Comments

Irregular triangle read by rows (see examples). Consider an arbitrary anharmonic oscillator with Hamiltonian energy: H=(1/2)*b^2=(1/2)*(p^2+q^2) + Sum_{i=3} 2*v_i*q^i, and a stable minimum at (p,q)=(0,0). The phase space trajectory can be written in polar phase space coordinates as (q,p) = (R(x)cos(x),R(x)sin(x))=(R(Q)Q,R(Q)P). The present triangle determines a power / Fourier series of R(Q): R(Q) = b * (1 + sum b^n*T(n,m)*f(n,m) ); where the sum runs over n = 1,2,3 ... and m = 1,2,3...A000041(n). The basis functions f(n,m) are constructed from partitions of "n" listed in reverse lexicographic order. Partition n=(z_1+z_2+...z_j) becomes 2*Q^((z_1+2)+(z_2+2)+...(z_j+2))*v_{z_1+2}*v_{z_2+2}*...*v_{z_j+2} (see examples). This sequence transforms into A273506/A273507 by setting v_i=0 for odd i, v_i:=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4     5     6      7
--------------------------------------------
1  | -1
2  | -1   5
3  | -1   12   -32
4  | -1   14    7   -126   231
5  | -1   16    16  -160  -160   1280  -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q]   = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
      Coefficient[term, #] & /@ basis[n]]
    With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]

A276816 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.

Original entry on oeis.org

-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814 and differential time dependence A276815. We calculate the period K = Int dt over the range [2*Pi, 0], trivial to compute from A276815 using A273496. Then K/(2*Pi) = 1 + sum b^(2n)*T(n,m)*f'(n,m); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(2n), and f'(n,m) = f(2n,m) of A276738 with Q=1/2. Choosing one point from the infinite dimensional coefficient space--v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise--setting b^2 = 4*k, and summing over the entire table obtains the EllipticK expansion 2*A038534/A038533. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m   1     2     3         4         5
------------------------------------------
1  | -24   480
2  | -120  6720  3360   -241920   1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
		

Crossrefs

Programs

  • Mathematica
    RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
    RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
    Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
    dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
    Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
    RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
    tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :>  Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
    RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
    tri7 = tri[7]; tri7 // TableForm
    PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
      2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
    {#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
    PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]

A276817 Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.

Original entry on oeis.org

-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows (see examples).
Consider an axially symmetric oscillator in two dimensions with polar coordinates ( r, y ). By conservation of angular momentum, replace the cyclic angle coordinate y with dy/dt = 1/r^2. The system becomes one-dimensional in r, with an effective potential including the 1/r^2 term. Assume that the effective potential has a minimum around r0 and apply a linear transform r --> q = r-r0. Radial oscillations around the effective potential minimum follow the exact solution of A276738, A276814, A276815, A276816. Now dy = dx (dy/dt) / (dx/dt) = dx * Sum b^n*T(n,m)*F(n,m), with n=1,2,3.... and m=1,2,3...A000070(n). Basis functions F(n,m) are an ordered union over A276738's f(n,m): F(n,m')={ (1/r0^2)*(Q/r0)^n } & Append_{i=1..n}_{m=1..A000041(n)} (1/2/r0^2)*(Q/r0)^(n - i)*f(i,m), where each successive term f(i,m) is appended such that index m' inherets the ordering of each m index (see examples). Integrating dx over a range of 2 Pi loses all odd rows, as in A276815 / A276816. This sequence is a useful tool in classical and relativistic astronomy (follow links to Wolfram demonstrations).

Examples

			n/m   1   2    3    4      5     6    7
------------------------------------------
0  | -1
1  |  2   6
2  | -3  -16   8   -48
3  |  4   30  -20   140   10   -140   420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
		

References

  • R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
  • J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
    dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
    TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
    With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
    (*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
    (*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
    (*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}

A276814 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space angular velocity.

Original entry on oeis.org

-3, -4, 6, -5, 22, -30, -6, 36, 16, -168, 192, -7, 54, 46, -294, -266, 1428, -1386, -8, 76, 64, -480, 30, -832, 2560, -128, 3520, -12800, 10752, -9, 102, 86, -738, 78, -1260, 4356, -594, -558, 11484, -23166, 3564, -42900, 118404, -87516, -10, 132, 112, -1080, 100, -1840, 7040, 48, -1680, -800, 18240, -40320, -760, 8640
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

Irregular triangle read by rows ( see examples ). The phase space trajectory of A276738 has one time dependent variable, the phase space angle "x" defined as Tan[x]=p/q. Then dx/dt = cos[x]^2* d/dt(p/q), which can be written as a function of Q=cos[x] by application of the classical equations of motion d/dt(p,q) = ( -d/dq H, d/dp H ), with H the anharmonic oscillator Hamiltonian. Substituting the result of A276738 and expanding in powers of b, we obtain dx/dt = -1 + sum b^n*T(n,m)*f(n,m); where the sum runs over n=1,2,3... and m = 1,2,3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. Observe the limit where Q --> 0, dx/dt --> -1, the harmonic oscillator value. Similarly if v_i --> 0 then dx/dt --> -1.

Examples

			n/m  1    2     3     4     5     6      7
---------------------------------------------
1  | -3
2  | -4,  6
3  | -5,  22,  -30
4  | -6,  36,   16,  -168   192
5  | -7,  54,   46,  -294  -266   1428  -1386
---------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{xd = xDot[10]},TriangleRow[#, xd] /. v[_] -> 0 & /@ Range[10]]

A276815 Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential time dependence.

Original entry on oeis.org

3, 4, -24, 5, -70, 210, 6, -96, -48, 960, -1920, 7, -126, -126, 1386, 1386, -12012, 18018, 8, -160, -160, 1920, -80, 3840, -17920, 640, -26880, 143360, -172032, 9, -198, -198, 2574, -198, 5148, -25740, 2574, 2574, -77220, 218790, -25740, 437580, -1662804, 1662804, 10, -240, -240, 3360, -240, 6720, -35840, -120, 6720, 3360
Offset: 1

Views

Author

Bradley Klee, Sep 18 2016

Keywords

Comments

The phase space trajectory A276738 has phase space angular velocity A276814, which allows expansion of dt = dx /(dx/dt) = dx(-1 + sum b^n*T(n,m)*f(n,m)); where the sum runs over n = 1, 2, 3 ... and m = 1, 2, 3, ... A000041(n). The basis functions f(n,m) are the same as in A276738. To obtain period K, we integrate the function of Q=cos[x] over a range of [2*pi,0]. All odd powers of Q integrate to zero, so the period is an expansion in E=(1/2)*b^2 (Cf. A276816). This sequence transforms into A274076/A274078 by setting v_i=0 for odd i, v_i=(-1)^(i/2-1)/2/(i!) otherwise, and (1/2)*b^2 = 2*k. For more details read "Plane Pendulum and Beyond by Phase Space Geometry" (Klee, 2016).

Examples

			n/m  1    2     3     4      5      6      7
------------------------------------------------
1  | 3
2  | 4   -24
3  | 5   -70    210
4  | 6   -96   -48   960   -1920
5  | 7   -126  -126  1386   1386  -12012  18018
------------------------------------------------
		

Crossrefs

Programs

  • Mathematica
    R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
    Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
    H[n_] := Expand[1/2*r^2 + Vp[n]]
    RRules[n_] :=  With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]},  Function[{rules},
        Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
       Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
    xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
    ->  ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
    dt[n_] := Expand[Normal@Series[1/xDot[n], {b, 0, n}]]
    basis[n_] :=  Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
    TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
    With[{dt10 = dt[10]}, TriangleRow[#, dt10] /. v[_] -> 0 & /@ Range[10]]
Showing 1-10 of 10 results.