A273506
T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
1, -1, 7, 1, -1, 11, -1, 319, -143, 715, 1, -26, 559, -221, 4199, -2, 139, -323, 6137, -2261, 52003, 1, -10897, 135983, -4199, 527459, -52003, 37145, -1, 15409, -317281, 21586489, -52877, 7429, -88711, 1964315, 1, -76, 269123, -100901, 274873, -8671, 227447, -227447, 39803225, -2, 466003, -213739, 522629, -59074189, 226061641, -10690009, 25701511, -42077695, 547010035
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 1
2 | -1, 7
3 | 1, -1, 11
4 | -1, 319, -143, 715
------------------------------
R2(Q) = sqrt(4 k) (1 + (1/6) cos(Q)^4 k + (-(1/45) cos(Q)^6 + (7/72) cos(Q)^8) k^2)
R2(Q)^2 = 4 k + (4/3) cos(Q)^4 k^2 + ( -(8/45) cos(Q)^6 + (8/9) cos(Q)^8)k^3 + ...
I2 = (1/(2 Pi)) Int dQ (1/2)R2(Q)^2 = 2 k + (1/4) k^2 + (3/32) k^3 + ...
(2/Pi) K(k) ~ (1/2)d/dk(I2) = 1 + (1/4) k + (9/64) k^2 + ...
From _Wolfdieter Lang_, Jun 11 2016 (Start):
The rational triangle r(n,m) = a(n, m) / A273507(n,m) begins:
n\m 1 2 3 4 ...
1: 1/6
2: -1/45 7/72
3: 1/630 -1/30 11/144
4: -1/14175 319/56700 -143/3240 715/10368
... ,
row n = 5: 1/467775 -26/42525 559/45360 -221/3888 4199/62208,
row 6: -2/42567525 139/2910600 -323/145800 6137/272160 -2261/31104 52003/746496,
row 7: 1/1277025750 -10897/3831077250 135983/471517200 -4199/729000 527459/13996800 -52003/559872 37145/497664,
row 8:
-1/97692469875 15409/114932317500 -317281/10945935000 21586489/20207880000 -52877/4199040 7429/124416 -88711/746496 1964315/23887872.
... (End)
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
R2ToEllK[NMax_] := D[Expand[(2)^(-2) ReplaceAll[R[NMax], RRules[NMax]]^2] /. {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0},k]
Flatten[Numerator@RCoefficients[10]]
R2ToEllK[10]
A273507
T(n, m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact phase space trajectory.
Original entry on oeis.org
6, 45, 72, 630, 30, 144, 14175, 56700, 3240, 10368, 467775, 42525, 45360, 3888, 62208, 42567525, 2910600, 145800, 272160, 31104, 746496, 1277025750, 3831077250, 471517200, 729000, 13996800, 559872, 497664, 97692469875, 114932317500, 10945935000, 20207880000, 4199040, 124416, 746496, 23887872
Offset: 1
n/m 1 2 3 4
------------------------------
1 | 6
2 | 45, 72
3 | 630, 30, 144
4 | 14175, 56700, 3240, 10368
------------------------------
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[
Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
RCoefficients[n_] := With[{Rn = ReplaceAll[R[n], RRules[n]]}, Function[{a},
Coefficient[Coefficient[Rn/2/Sqrt[k], k^a],
Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
Flatten[Denominator@RCoefficients[10]]
A274076
T(n, m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact differential time dependence.
Original entry on oeis.org
-2, 2, -2, -4, 8, -20, 2, -58, 14, -70, -4, 16, -344, 112, -28, 4, -556, 1064, -152, 308, -308, -8, 10256, -3368, 4576, -6248, 2288, -1144, 2, -1622, 33398, -98794, 34606, -4862, 2002, -1430, -4, 6688, -187216, 140384, -1242904, 59488, -25168, 77792, -48620
Offset: 1
The triangle T(n, m) begins:
n/m 1 2 3 4
------------------------------
1 | -2
2 | 2, -2
3 | -4, 8, -20
4 | 2, -58, 14, -70
------------------------------
The rational triangle T(n, m) / A274078(n, m) begins:
n/m 1 2 3 4
------------------------------------------
1 | -2/3
2 | 2/15, -2/3
3 | -4/315, 8/27, -20/27
4 | 2/2835, -58/945, 14/27, -70/81
------------------------------------------
dt2(Q) = dQ(-1 - (2/3) cos(Q)^4 k + ((2/15) cos(Q)^6 - (2/3) cos(Q)^8) k^2 ) + ...
dt2(Q) = dQ(-1 - (1/4) k - (9/64) k^2 + cosine series ) + ...
(2/Pi) K(k) ~ I2 = (1/(2 Pi)) Int dt2(Q) = 1 + (1/4) k + (9/64) k^2+ ...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
dtCoefficients[n_] := With[{dtn = dt[n]}, Function[{a}, Coefficient[ Coefficient[dtn, k^a], Cos[Q]^(2 (a + #))] & /@ Range[a]] /@ Range[n]]
dtToEllK[NMax_] := ReplaceAll[-dt[NMax], {Cos[Q]^n_ :> Divide[Binomial[n, n/2], (2^(n))], k^n_ /; n > NMax -> 0} ]
Flatten[Numerator[dtCoefficients[10]]]
dtToEllK[5]
A274130
Irregular triangle T(n,m), numerators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
1, 1, 11, 29, 1, 1, 491, 863, 6571, 4399, 13, 5, 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35, 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7, 5301974777, 22870237, 1603483793, 23507881213, 122574691, 122330761339, 903325919, 1976751869, 956873, 18551, 35, 77
Offset: 1
n\m 1 2 3 4 5 6 ...
-----------------------------------------
1 | 1 1
2 | 11 29 1 1
3 | 491 863 6571 4399 13 5
row n=4: 1568551, 28783, 45187, 312643, 4351, 1117, 17, 35,
row n=5: 25935757, 81123251, 2226193, 2440117, 16025, 34246631, 18161, 35443, 49, 7.
-----------------------------------------
The rational irregular triangle T(n, m) / A274131(n, m) begins:
n\m 1 2 3 4 5 6
-----------------------------------------------------------------------------
1 | 1/6, 1/48
2 | 11/96, 29/960, 1/160, 1/1536
3 | 491/5760, 863/30720, 6571/725760, 4399/1935360, 13/34560, 5/165888
row n=4: 1568551/23224320, 28783/1161216, 45187/4644864, 312643/92897280, 4351/4644864, 1117/5806080, 17/663552, 35/21233664,
row n=5: 25935757/464486400, 81123251/3715891200, 2226193/232243200, 2440117/619315200, 16025/11354112, 34246631/81749606400, 18161/185794560, 35443/2123366400, 49/26542080, 7/70778880.
-----------------------------------------------------------------------------
t1(Q) =-Q -(1/4)*k*Q -k*((1/6)*Sin[2*Q]+(1/48)*Sin[4*Q])+...
(2/Pi) K(k) ~ (1/(2 Pi)) t1(-2*Pi) = 1+(1/4)*k+...
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
tToEllK[NMax_]:= Expand[((t[NMax] /. Q -> -2 Pi)/2/Pi) /. k^n_ /; n > NMax -> 0]
Flatten[Numerator[-tCoefficients[10]]]
tToEllK[5]
A274131
Irregular triangle T(n,m), denominators of coefficients in a power/Fourier series expansion of the plane pendulum's exact time dependence.
Original entry on oeis.org
6, 48, 96, 960, 160, 1536, 5760, 30720, 725760, 1935360, 34560, 165888, 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664, 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880
Offset: 1
n\m 1 2 3 4 5 6
------------------------------------------------------
1 | 6 48
2 | 96 960 160 1536
3 | 5760 30720 725760 1935360 34560 165888
------------------------------------------------------
row 4: 23224320, 1161216, 4644864, 92897280, 4644864, 5806080, 663552, 21233664,
row 5: 464486400, 3715891200, 232243200, 619315200, 11354112, 81749606400, 185794560, 2123366400, 26542080, 70778880.
-
R[n_] := Sqrt[4 k] Plus[1, Total[k^# R[#, Q] & /@ Range[n]]]
Vq[n_] := Total[(-1)^(# - 1) (r Cos[Q] )^(2 #)/((2 #)!) & /@ Range[2, n]]
RRules[n_] := With[{H = ReplaceAll[1/2 r^2 + (Vq[n + 1]), {r -> R[n]}]},
Function[{rules}, Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, Q] -> Expand[(-1/4) ReplaceAll[ Coefficient[H, k^(# + 1)], {R[#, Q] -> 0}]] & /@ Range[n]]]]
dt[n_] := With[{rules = RRules[n]}, Expand[Subtract[ Times[Expand[D[R[n] /. rules, Q]], Normal@Series[1/R[n], {k, 0, n}] /. rules, Cot[Q] ], 1]]]
t[n_] := Expand[ReplaceAll[Q TrigReduce[dt[n]], Cos[x_ Q] :> (1/x/Q) Sin[x Q]]]
tCoefficients[n_] := With[{tn = t[n]},Function[{a}, Coefficient[Coefficient[tn, k^a], Sin[2 # Q] ] & /@ Range[2 a]] /@ Range[n]]
Flatten[Denominator[-tCoefficients[10]]]
A276738
Irregular triangle read by rows: T(n,m) = coefficients in a power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space trajectory.
Original entry on oeis.org
-1, -1, 5, -1, 12, -32, -1, 14, 7, -126, 231, -1, 16, 16, -160, -160, 1280, -1792, -1, 18, 18, -198, 9, -396, 1716, -66, 2574, -12870, 14586, -1, 20, 20, -240, 20, -480, 2240, -240, -240, 6720, -17920, 2240, -35840, 129024, -122880, -1, 22, 22, -286, 22, -572, 2860, 11, -572, -286, 8580, -24310, -286, 4290, 8580, -97240, 184756, 715
Offset: 1
n/m 1 2 3 4 5 6 7
--------------------------------------------
1 | -1
2 | -1 5
3 | -1 12 -32
4 | -1 14 7 -126 231
5 | -1 16 16 -160 -160 1280 -1792
--------------------------------------------
R[1,Q] = -2*v_3*Q^3
R[2,Q] = -2*v_4*Q^4 + 10*v_3^2*Q^6
R[Q] = b*(1+b*(-2*v_3*Q^3)+b^2*(-2*v_4*Q^4 + 10*v_3^2*Q^6 ))+O(b^4)
Construct basis for R[4,Q]; List partitions: {{4}, {3, 1}, {2, 2}, {2, 1, 1}, {1, 1, 1, 1}}; Transform Plus 2: {{v_6}, {v_5, v_3}, {v_4, v_4}, {v_4, v_3, v_3}, {v_3, v_3, v_3, v_3}}; Multiply: {v_6, v_5*v_3, v_4^2, v_4*v_3^2, v_3^4}; don't forget power of Q and factor of 2: {2*v_6*Q^6, 2*v_5*v_3*Q^8, 2*v_4^2*Q^8, 2*v_4*v_3^2*Q^10, 2*v_3^4*Q^12}.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, rules_] := With[{term = Expand[rules[[n, 2]]]},
Coefficient[term, #] & /@ basis[n]]
With[{rules = RRules[10]}, TriangleRow[#, rules] & /@ Range[10]]
A276816
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact period.
Original entry on oeis.org
-24, 480, -120, 6720, 3360, -241920, 1774080, -560, 40320, 40320, -1774080, 20160, -3548160, 61501440, -591360, 92252160, -1845043200, 8364195840, -2520, 221760, 221760, -11531520, 221760, -23063040, 461260800, 110880, -23063040, -11531520, 1383782400, -15682867200, -11531520, 691891200, 1383782400, -62731468800, 476759162880
Offset: 1
n/m 1 2 3 4 5
------------------------------------------
1 | -24 480
2 | -120 6720 3360 -241920 1774080
------------------------------------------
For pendulum values, f'(1,*)={(-1/384), 0}, f'(2,*) = {1/46080, 0, 1/294912, 0, 0}. Then K/(2Pi) = 1+(-1/384)*(-24)*4*k+((1/46080)*(-120)+(1/294912)*3360)*16*k^2=1+(1/4)*k + (9/64)*k^2, the first few terms of EllipticK.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
RExp[n_]:=Expand[b Plus[R[0], Total[b^# R[#] & /@ Range[n]]]]
RCalc[n_]:=With[{basis =Subtract[Tally[Join[Range[n + 2], #]][[All, 2]],Table[1, {n + 2}]] & /@ IntegerPartitions[n + 2][[3 ;; -1]]},
Total@ReplaceAll[Times[-2, Multinomial @@ #, v[Total[#]],Times @@ Power[RSet[# - 1] & /@ Range[n + 2], #]] & /@ basis, {Q^2 -> 1, v[2] -> 1/4}]]
dt[n_] := With[{exp = Normal[Series[-1/(1 + x)/.x -> Total[(2 # v[#] RExp[n - 1]^(# - 2) &/@Range[3, n + 2])], {b, 0, n}]]},
Expand@ReplaceAll[Coefficient[exp, b, #] & /@ Range[n], R -> RSet]]
RingGens[n_] :=Times @@ (v /@ #) & /@ (IntegerPartitions[n]/. x_Integer :> x + 2)
tri[m_] := MapThread[Function[{a, b},Times[-# /. v[n_] :> Q^n /. Q^n_ :> Binomial[n, n/2],(1/2) Coefficient[a, #]] & /@ b], {dt[2 m][[2 #]] & /@ Range[m], RingGens[2 #] & /@ Range[m]}]
RSet[0] = 1; Set[RSet[#], Expand@RCalc[#]] & /@ Range[2*7];
tri7 = tri[7]; tri7 // TableForm
PeriodExpansion[tri_, n_] := ReplaceAll[ 1 + Dot[MapThread[ Dot, {tri,
2 RingGens[2 #] & /@ Range[n]}], (2 h)^(Range[n])], {v[m_] :> (v[m]*(1/2)^m)}]
{#,SameQ[Normal@Series[(2/Pi)*EllipticK[k],{k,0,7}],#]}&@ReplaceAll[
PeriodExpansion[tri7,7],{v[n_/;OddQ[n]]:>0,v[n_]:> (-1)^(n/2-1)/2/(n!),h->2 k}]
A276817
Irregular triangle read by rows: T(n,m) = coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential precession.
Original entry on oeis.org
-1, 2, 6, -3, -16, 8, -48, 4, 30, -20, 140, 10, -140, 420, -5, -48, 36, -288, -24, 384, -1280, 12, -192, -96, 1920, -3840, 6, 70, -56, 504, 42, -756, 2772, -28, 504, 252, -5544, 12012, 14, -252, -252, 2772, 2772, -24024, 36036, -7, -96, 80, -800, -64, 1280, -5120, 48, -960, -480, 11520, -26880, -32, 640, 640, -7680
Offset: 0
n/m 1 2 3 4 5 6 7
------------------------------------------
0 | -1
1 | 2 6
2 | -3 -16 8 -48
3 | 4 30 -20 140 10 -140 420
------------------------------------------
Construction of F(2,_). List f(i,_) basis sets: {f(1,_)={2*Q^3*v_3},f(2,_)= {2*Q^4*v_4, 2*Q^6*v_3^2}}; Integrate and join: F(2,_)={(1/r0^2)*(Q/r0)^2,2*Q^3*v_3*(1/2/r0^2)*(Q/r0),2*Q^4*v_4*(1/2/r0^2), 2*Q^6*v_3^2*(1/2/r0^2)}={Q^2/r0^4,Q^4*v_3/r0^3,Q^4*v_4/r0^2,Q^6*v_3^2/r0^2}.
dy Expansion to second order: dy=dx(-(1/r0^2)+b^2*(2*Q/r0^3 + 6*Q^3*v_3/r0^2)+b^3*(-3*Q^2/r0^4 - 16*Q^4*v_3/r0^3 - 48*Q^6*v_3^2/r0^2 + 8*Q^4*v_4/r0^2)+O(b^3).
Cancellation of higher orders 1 to infinity and closed orbits. Kepler values {r0 = 1, v_n := ((n - 1)/4)*(-1)^n} yield dy = -dx. Harmonic oscillator values {r0 = Sqrt[2], v_n := ((-1)^n*(n + 1)/4/2)/sqrt[2]^n} yield dy = -(1/2)*dx. Parity symmetric conjectured values {r0=Sqrt[1/R],v_n odd n := 0,v_n even n := R^(n/2 - 1)*(n/8)} yield dy = -R*dx (see attached image "Pentagonal Orbits")?
- R. M. Wald, General Relativity, University of Chicago press, 2010, pages 139-143.
- J.A. Wheeler, A Journey into Gravity and Spacetime, Scientific American Library, 1990, pages 168-183.
- Bradley Klee, Plane Pendulum and Beyond by Phase Space Geometry, arXiv:1605.09102 [physics.class-ph], 2016.
- Bradley Klee, Estimating Planetary Perihelion Precession, Wolfram Demonstrations Project, 2106.
- Bradley Klee, Exact and Approximate Relativistic Corrections to the Orbital Precession of Mercury, Wolfram Demonstrations Project, 2016.
- Bradley Klee, Pentagonal Orbits
- Seqfans, Another planetary sequence, Seqfans mailing list, September 2016.
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
ydot[n__] := Expand[Normal@Series[1/(r0 + q)^2 /. {q -> R[n] Q} /. RRules[n], {b, 0, n}]]
dy[n_] := Expand@Normal@Series[ydot[n]/xDot[n], {b, 0, n}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
extendedBasis[n_] :=Flatten[(1/2/r0^2) (Q/r0)^(n - #) basis[#] & /@ Range[0, n]]
TriangleRow[n_, func_] := Coefficient[func, b^n #] & /@ extendedBasis[n]
With[{dy5 = dy[5]}, TriangleRow[#, dy5] /. v[_] -> 0 & /@ Range[0, 5]]
(*Kepler Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {r0 -> 1, Cos[] -> 0, v[n] :> ((n - 1)/4)*(-1)^n}
(*Harmonic Test*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n] :> ((-1)^n*(n + 1)/4/2)/Sqrt[2]^n, r0 -> Sqrt[2]}
(*Conjecture*)TrigReduce[dy[5] /. {Q -> Cos[x]}] /. {Cos[] -> 0, v[n /; OddQ[n]] :> 0, v[n_] :> RR^(n/2 - 1)*n/8, r0 -> Sqrt[1/RR]}
A276814
Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact phase space angular velocity.
Original entry on oeis.org
-3, -4, 6, -5, 22, -30, -6, 36, 16, -168, 192, -7, 54, 46, -294, -266, 1428, -1386, -8, 76, 64, -480, 30, -832, 2560, -128, 3520, -12800, 10752, -9, 102, 86, -738, 78, -1260, 4356, -594, -558, 11484, -23166, 3564, -42900, 118404, -87516, -10, 132, 112, -1080, 100, -1840, 7040, 48, -1680, -800, 18240, -40320, -760, 8640
Offset: 1
n/m 1 2 3 4 5 6 7
---------------------------------------------
1 | -3
2 | -4, 6
3 | -5, 22, -30
4 | -6, 36, 16, -168 192
5 | -7, 54, 46, -294 -266 1428 -1386
---------------------------------------------
Arbitrary Oscillator:
A276738,
A276815,
A276816,
A276817. Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
With[{xd = xDot[10]},TriangleRow[#, xd] /. v[_] -> 0 & /@ Range[10]]
A276815
Irregular triangle read by rows T(n,m), coefficients in power/Fourier series expansion of an arbitrary anharmonic oscillator's exact differential time dependence.
Original entry on oeis.org
3, 4, -24, 5, -70, 210, 6, -96, -48, 960, -1920, 7, -126, -126, 1386, 1386, -12012, 18018, 8, -160, -160, 1920, -80, 3840, -17920, 640, -26880, 143360, -172032, 9, -198, -198, 2574, -198, 5148, -25740, 2574, 2574, -77220, 218790, -25740, 437580, -1662804, 1662804, 10, -240, -240, 3360, -240, 6720, -35840, -120, 6720, 3360
Offset: 1
n/m 1 2 3 4 5 6 7
------------------------------------------------
1 | 3
2 | 4 -24
3 | 5 -70 210
4 | 6 -96 -48 960 -1920
5 | 7 -126 -126 1386 1386 -12012 18018
------------------------------------------------
Pendulum:
A273506,
A273507,
A274076,
A274078,
A274130,
A274131,
A038534,
A056982,
A000984,
A001790,
A038533,
A046161,
A273496.
-
R[n_] := b Plus[1, Total[b^# R[#, q] & /@ Range[n]]]
Vp[n_] := Total[2 v[# + 2] q^(# + 2) & /@ Range[n]]
H[n_] := Expand[1/2*r^2 + Vp[n]]
RRules[n_] := With[{H = Series[ReplaceAll[H[n], {q -> R[n] Q, r -> R[n]}], {b, 0, n + 2}]}, Function[{rules},
Nest[Rule[#[[1]], ReplaceAll[#[[2]], rules]] & /@ # &, rules, n]][
Flatten[R[#, q] -> Expand[-ReplaceAll[ Coefficient[H, b^(# + 2)], {R[#, q] -> 0}]] & /@ Range[n]]]]
xDot[n_] := Expand[Normal@Series[ReplaceAll[ Q^2 D[D[q[t], t]/q[t], t], {D[q[t], t] -> R[n] P, q[t] -> R[n] Q, r -> R[n], D[q[t], {t, 2}]
-> ReplaceAll[D[-(q^2/2 + Vp[n]), q], q -> R[n] Q]} ], {b, 0, n}] /. RRules[n] /. {P^2 -> 1 - Q^2}]
dt[n_] := Expand[Normal@Series[1/xDot[n], {b, 0, n}]]
basis[n_] := Times[Times @@ (v /@ #), Q^Total[#],2] & /@ (IntegerPartitions[n] /. x_Integer :> x + 2)
TriangleRow[n_, fun_] := Coefficient[fun, b^n #] & /@ basis[n]
With[{dt10 = dt[10]}, TriangleRow[#, dt10] /. v[_] -> 0 & /@ Range[10]]
Showing 1-10 of 10 results.
Comments