cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273527 a(n) is the smallest exponent > 1 such that p^a(n) begins with p, where p is the n-th prime.

Original entry on oeis.org

8, 18, 24, 20, 26, 10, 166, 19, 48, 14, 58, 45, 205, 31, 248, 30, 49, 178, 3054, 122, 140, 294, 174, 80, 152, 233, 79, 920, 295, 359, 107, 308, 257, 8, 180, 96, 98, 34, 230, 921, 527, 164, 428, 901, 344, 88, 627, 1003, 192, 240, 50, 38, 1747, 609, 1028, 432, 122
Offset: 1

Views

Author

Paolo P. Lava, May 24 2016

Keywords

Comments

Subset of A051248.

Examples

			2^2 = 4, 2^3 = 8, 2^4 = 16, 2^5 = 32, 2^6 = 64, 2^7 = 128, 2^8 = 256;
3^2 = 9, 3^3 = 27, 3^4 = 81, 3^5 = 243, ..., 3^18 = 387420489.
		

Crossrefs

Programs

  • Maple
    P:=proc(q) local b,d,k,n; for n from 1 to q do if isprime(n) then d:=ilog10(n);
    for k from 2 to q do b:=ilog10(n^k); if n=trunc(n^k/10^(b-d)) then print(k);
    break; fi; od;  fi; od; end: P(10^6);
  • Mathematica
    sep[n_]:=Module[{len=IntegerLength[n],idn=IntegerDigits[n],exp=2}, While[ Take[ IntegerDigits[ n^exp],len] != idn,exp++];exp]; sep/@Prime[ Range[ 60]] (* Harvey P. Dale, Jun 15 2016 *)

Formula

a(n) = A051248(A000040(n)).