cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A273599 Numbers k such that (11^k - 7^k)/4 is prime.

Original entry on oeis.org

5, 19, 67, 107, 593, 757, 1801, 2243, 2383, 6043, 10181, 11383, 15629
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 36061, 15286922888307293287, 1483371444025889427763765389467527889556636442659800720575790059738807, ...
a(14) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 7^#)/4] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 7^n)/4), print1(n, ", ")))

A273600 Numbers k such that (11^k - 8^k)/3 is prime.

Original entry on oeis.org

2, 7, 11, 17, 37, 521, 877, 2423
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 19, 5796673, 92240578673, 167731742895202841, 113345629904382710526197539019199125641, ...
a(9) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 8^#)/3] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 8^n)/3), print1(n, ", ")))

A273601 Numbers k such that (11^k - 9^k)/2 is prime.

Original entry on oeis.org

5, 31, 271, 929, 2789, 4153
Offset: 1

Views

Author

Tim Johannes Ohrtmann, May 26 2016

Keywords

Comments

All terms are prime.
The corresponding primes: 51001, 95780952266636767336259095696501, ...
a(7) > 50000. - Michael S. Branicky, Nov 11 2024

Crossrefs

Programs

  • Mathematica
    Select[Range[1, 10000], PrimeQ[(11^# - 9^#)/2] &]
  • PARI
    for(n=1, 10000, if(isprime((11^n - 9^n)/2), print1(n, ", ")))
Showing 1-3 of 3 results.