A273826 Number of ordered ways to write n as x^2 + y^2 + z^2 + w^2 with x*y + y*z + z*w a fourth power, where x is a positive integer, y is a nonnegative integer, and z and w are integers.
1, 5, 5, 3, 8, 6, 5, 4, 2, 11, 5, 5, 10, 1, 3, 1, 9, 15, 4, 9, 2, 4, 6, 2, 13, 13, 10, 7, 8, 6, 3, 5, 9, 14, 6, 9, 13, 9, 9, 10, 13, 11, 5, 4, 14, 5, 8, 5, 6, 15, 10, 17, 14, 13, 6, 1, 18, 17, 2, 8, 8, 5, 17, 3, 23, 15, 9, 17, 10, 9
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2 + 0^2 + 0^2 + 0^2 with 1 > 0, 0 = 0 and 1*0 + 0*0 + 0*0 = 0^4. a(14) = 1 since 14 = 3^2 + 1^2 + (-2)^2 + 0^2 with 3 > 0, 1 > 0 and 3*1 + 1*(-2) + (-2)*0 = 1^4. a(56) = 1 since 56 = 6^2 + 4^2 + (-2)^2 + 0^2 with 6 > 0, 4 > 0 and 6*4 + 4*(-2) + (-2)*0 = 2^4. a(91) = 1 since 91 = 4^2 + 7^2 + (-1)^2 + 5^2 with 4 > 0, 7 > 0 and 4*7 + 7*(-1) + (-1)*5 = 2^4. a(184) = 1 since 184 = 10^2 + 4^2 + (-2)^2 + 8^2 with 10 > 0, 4 > 0 and 10*4 + 4*(-2) + (-2)*8 = 2^4. a(329) = 1 since 329 = 18^2 + 1^2 + (-2)^2 + 0^2 with 18 > 0, 1 > 0 and 18*1 + 1*(-2) + (-2)*0 = 2^4. a(355) = 1 since 355 = 17^2 + 1^2 + (-8)^2 + 1^2 with 17 > 0, 1 > 0 and 17*1 + 1*(-8) + (-8)*1 = 1^4. a(1016) = 1 since 1016 = 2^2 + 20^2 + 6^2 + (-24)^2 with 2 > 0, 20 > 0 and 2*20 + 20*6 + 6*(-24) = 2^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..7000
- Yu-Chen Sun and Zhi-Wei Sun, Two refinements of Lagrange's four-square theorem, arXiv:1605.03074 [math.NT], 2016.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.GM], 2016.
Crossrefs
Cf. A000118, A000290, A000578, A000583, A260625, A261876, A262357, A267121, A268197, A268507, A269400, A270073, A270969, A271510, A271513, A271518, A271608, A271665, A271714, A271721, A271724, A271775, A271778, A271824, A272084, A272332, A272351, A272620, A272888, A272977, A273021, A273107, A273108, A273110, A273134, A273278, A273294, A273302, A273404, A273429, A273432, A273458, A273568, A273616.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] QQ[n_]:=QQ[n]=IntegerQ[n^(1/4)] Do[r=0;Do[If[SQ[n-x^2-y^2-z^2]&&QQ[x*y+y*(-1)^j*z+(-1)^(j+k)*z*Sqrt[n-x^2-y^2-z^2]],r=r+1],{x,1,Sqrt[n]},{y,0,Sqrt[n-x^2]},{z,0,Sqrt[n-x^2-y^2]},{j,0,Min[1,z]},{k,0,Min[1,Sqrt[n-x^2-y^2-z^2]]}];Print[n," ",r];Continue,{n,1,70}]
Comments