cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273651 a(n) = A000594(p) mod p, where p = prime(n).

Original entry on oeis.org

0, 0, 0, 0, 1, 8, 10, 7, 1, 24, 21, 31, 30, 31, 27, 29, 14, 49, 64, 19, 67, 37, 20, 56, 20, 74, 50, 34, 73, 29, 109, 64, 4, 137, 66, 32, 154, 64, 106, 51, 119, 97, 95, 110, 63, 102, 169, 28, 166
Offset: 1

Views

Author

Seiichi Manyama, May 27 2016

Keywords

Crossrefs

Programs

  • Mathematica
    Mod[RamanujanTau@ #, #] & /@ Prime@ Range@ 80 (* Michael De Vlieger, May 27 2016 *)
  • PARI
    a(n,p=prime(n))=(65*sigma(p, 11)+691*sigma(p, 5)-691*252*sum(k=1, p-1, sigma(k, 5)*sigma(p-k, 5)))/756%p \\ Charles R Greathouse IV, Jun 07 2016
    
  • Python
    from sympy import prime, divisor_sigma
    def A273651(n):
        p = prime(n)
        return -1680*sum(pow(i,4,p)*divisor_sigma(i)*divisor_sigma(p-i) for i in range(1,p+1>>1)) % p # Chai Wah Wu, Nov 08 2022
  • Ruby
    require 'prime'
    def mul(f_ary, b_ary, m)
      s1, s2 = f_ary.size, b_ary.size
      ary = Array.new(s1 + s2 - 1, 0)
      s10 = [s1 - 1, m].min
      (0..s10).each{|i|
        s20 = [s2 - 1, m - i].min
        (0..s20).each{|j|
          ary[i + j] += f_ary[i] * b_ary[j]
        }
      }
      ary
    end
    def power(ary, n, m)
      return [1] if n == 0
      k = power(ary, n >> 1, m)
      k = mul(k, k, m)
      return k if n & 1 == 0
      return mul(k, ary, m)
    end
    def A000594(n)
      ary = Array.new(n + 1, 0)
      i = 0
      j, k = 2 * i + 1, i * (i + 1) / 2
      while k <= n
        i & 1 == 1? ary[k] = -j : ary[k] = j
        i += 1
        j, k = 2 * i + 1, i * (i + 1) / 2
      end
      power(ary, 8, n).unshift(0)[1..n]
    end
    def A273651(n)
      p_ary = Prime.each.take(n)
      t_ary = A000594(p_ary[-1])
      p_ary.inject([]){|s, i| s << t_ary[i - 1] % i}
    end
    p A273651(n)
    

Formula

for n > 1, a(n) = -1680*Sum_{i=1..(p-1)/2} i**4*sigma(i)*sigma(p-i) mod p where p = prime(n). - Chai Wah Wu, Nov 08 2022