A273679 Numbers k such that 10^k - 1000000001 is prime.
11, 18, 22, 26, 27, 36, 45, 59, 140, 162, 201, 278, 427, 563, 588, 757, 951, 2006, 3938, 4127, 4490, 5637, 6074, 6725, 7025, 10191, 25628, 39415, 51872, 57501, 90227, 115773, 117142, 148934
Offset: 1
Examples
11 is in this sequence because 10^11 - 1000000001 = 98999999999 is prime. Initial terms and associated primes: a(1) = 11, 98999999999, a(2) = 18, 999999998999999999, a(3) = 22, 9999999999998999999999, a(4) = 26, 99999999999999998999999999, a(5) = 27, 999999999999999998999999999, etc.
Links
- Makoto Kamada, Factorization of near-repdigit-related numbers.
- Makoto Kamada, Search for 9w8999999999.
Programs
-
Mathematica
Select[Range[0, 100000], PrimeQ[10^#-1000000001] &]
-
PARI
is(n)=ispseudoprime(10^n-10^9-1) \\ Charles R Greathouse IV, Jun 08 2016
-
Python
from sympy import isprime def afind(limit): tenk = 10**10 for k in range(10, limit+1): if isprime(tenk - 1000000001): print(k, end=", ") tenk *= 10 afind(100000) # Michael S. Branicky, Nov 18 2021
Extensions
a(32)-a(33) from Robert Price, Mar 01 2018
a(34) from Robert Price, Dec 31 2020
Comments