cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273712 Number A(n,k) of k-ary heaps on n levels; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 6, 80, 1, 0, 1, 1, 24, 7484400, 21964800, 1, 0, 1, 1, 120, 3892643213082624, 35417271278873496315860673177600000000, 74836825861835980800000, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, May 28 2016

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,        1,                                      1, ...
  1, 1,        1,                                      1, ...
  0, 1,        2,                                      6, ...
  0, 1,       80,                                7484400, ...
  0, 1, 21964800, 35417271278873496315860673177600000000, ...
		

Crossrefs

Columns k=0-4 give: A019590(n+1), A000012, A056972, A273723, A273725.
Main diagonal gives A273729.
Cf. A273693.

Programs

  • Maple
    with(combinat):
    b:= proc(n, k) option remember; local h, i, x, y, z;
          if n<2 then 1 elif k<2 then k
        else h:= ilog[k]((k-1)*n+1);
             if k^h=(k-1)*n+1 then b((n-1)/k, k)^k*
                multinomial(n-1, ((n-1)/k)$k)
           else x, y:=(k^h-1)/(k-1), (k^(h-1)-1)/(k-1);
                for i from 0 do z:= (n-1)-(k-1-i)*y-i*x;
                  if y<=z and z<=x then b(y, k)^(k-1-i)*
                     multinomial(n-1, y$(k-1-i), x$i, z)*
                     b(x, k)^i*b(z, k); break fi
                od
          fi fi
        end:
    A:= (n, k)-> `if`(n<2, 1, `if`(k<2, k, b((k^n-1)/(k-1), k))):
    seq(seq(A(n,d-n), n=0..d), d=0..7);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, k_] := b[n, k] = Module[{h, i, x, y, z}, Which[n<2, 1, k<2, k, True, h = Log[k, (k-1)*n+1] // Floor; If[k^h == (k-1)*n+1, b[(n-1)/k, k]^k*multinomial[n-1, Array[(n-1)/k&, k]], {x, y} := {(k^h-1)/(k-1), (k^(h-1)-1)/(k-1)}; For[i = 0, True, i++, z = (n-1) - (k-1-i)*y - i*x; If[y <= z && z <= x, b[y, k]^(k-1-i) * multinomial[n-1, Join[Array[y&, k-1-i], Array[x&, i], {z}]]*b[x, k]^i * b[z, k]; Break[]]]]]];
    A[n_, k_] := If[n<2, 1, If[k<2, k, b[(k^n-1) / (k-1), k]]];
    Table[A[n, d-n], {d, 0, 7}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)