A273713 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k doublerises (n>=2, k>=0). A doublerise in a bargraph is any pair of adjacent up steps.
1, 1, 1, 2, 2, 1, 4, 5, 3, 1, 8, 13, 9, 4, 1, 17, 32, 28, 14, 5, 1, 37, 80, 81, 50, 20, 6, 1, 82, 201, 231, 165, 80, 27, 7, 1, 185, 505, 653, 526, 295, 119, 35, 8, 1, 423, 1273, 1824, 1644, 1036, 483, 168, 44, 9, 1, 978, 3217, 5058, 5034, 3535, 1848, 742, 228, 54, 10, 1
Offset: 2
Examples
Row 4 is 2,2,1 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0, 0, 1, 1, 2 doublerises. Triangle starts 1; 1,1; 2,2,1; 4,5,3,1; 8,13,9,4,1
Links
- Alois P. Heinz, Rows n = 2..150, flattened
- M. Bousquet-Mélou and A. Rechnitzer, The site-perimeter of bargraphs, Adv. in Appl. Math. 31 (2003), 86-112.
- Emeric Deutsch, S Elizalde, Statistics on bargraphs viewed as cornerless Motzkin paths, arXiv preprint arXiv:1609.00088, 2016
Programs
-
Maple
eq := z*G^2-(1-z-t*z-z^2)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 22)): for n from 2 to 20 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 20 do seq(coeff(P[n], t, j), j = 0 .. n-2) end do; # yields sequence in triangular form # second Maple program: b:= proc(n, y, t) option remember; expand(`if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1)*`if`(t=1, z, 1))+ `if`(t>0 or y<2, 0, b(n, y-1, -1))+ `if`(y<1, 0, b(n-1, y, 0)))) end: T:= n-> (p-> seq(coeff(p, z, i), i=0..n-2))(b(n, 0$2)): seq(T(n), n=2..16); # Alois P. Heinz, Jun 06 2016
-
Mathematica
b[n_, y_, t_] := b[n, y, t] = Expand[If[n == 0, 1 - t, If[t < 0, 0, b[n - 1, y + 1, 1]*If[t == 1, z, 1]] + If[t > 0 || y < 2, 0, b[n, y - 1, -1]] + If[y < 1, 0, b[n - 1, y, 0]]]]; T[n_] := Function [p, Table[Coefficient[p, z, i], {i, 0, n - 2}]][b[n, 0, 0]]; Table[T[n], {n, 2, 16}] // Flatten (* Jean-François Alcover, Jul 29 2016, after Alois P. Heinz *)
Formula
G.f.: G = G(t,z) satisfies zG^2 - (1 - z - tz - z^2)G + z^2 = 0.
Comments