cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273714 Number of doublerises in all bargraphs having semiperimeter n (n>=2). A doublerise in a bargraph is any pair of adjacent up steps.

Original entry on oeis.org

0, 1, 4, 14, 47, 155, 508, 1662, 5438, 17809, 58395, 191732, 630373, 2075221, 6840140, 22571800, 74564874, 246568051, 816099650, 2703492238, 8963064935, 29738123605, 98735734915, 328034119098, 1090509180192, 3627343273885, 12072071392105, 40197107361740, 133910579452363
Offset: 2

Views

Author

Emeric Deutsch, May 28 2016

Keywords

Comments

a(n) appears to be the number of 021-avoiding ascent sequences (A022493) with exactly one repeated nonzero entry, where repeated means two consecutive equal entries. For example, a(4) = 4 counts 0011, 0110, 0112, 0122, and a(5) = 14 counts 00011, 00110, 00112, 00122, 01011, 01022, 01100, 0110 1, 01102, 01120, 01123, 0122 0, 01223, 01233. - David Callan, Nov 21 2021

Examples

			a(4) = 4 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have 0, 0, 1, 1, 2 doublerises.
		

Crossrefs

Programs

  • Maple
    g := ((1-2*z-z^2-sqrt(1-4*z+2*z^2+z^4))*(1/2))/sqrt(1-4*z+2*z^2+z^4): gser := series(g, z = 0, 40): seq(coeff(gser, z, n), n = 2 .. 35);
  • Mathematica
    F[k_] := DifferenceRoot[Function[{y, n}, {(2 + n) y[n] + (6 + 2 n) y[2 + n] + (-14 - 4 n) y[3 + n] + (4 + n) y[4 + n] == 0, y[0] == 1, y[1] == 2, y[2] == 5, y[3] == 14}]][k]; Table[1/2 (-F[n] - 2 F[n + 1] + F[n + 2]), {n, 0, 20}] (* Benedict W. J. Irwin, May 29 2016 *)

Formula

G.f.: g = (1 - 2z - z^2 - Q)/(2Q), where Q = sqrt(1 - 4z + 2z^2 + z^4).
a(n) = Sum_{k>0} k*A273713(n,k).
From Benedict W. J. Irwin, May 29 2016: (Start)
Let y(0)=1, y(1)=2, y(2)=5, y(3)=14,
Let (n+2)*y(n) + (2*n+6)*y(n+2) - (4*n+14)*y(n+3) + (n+4)*y(n+4)=0,
a(n) = (y(n+2)-2*y(n+1)-y(n))/2.
(End)
D-finite with recurrence n*a(n) +6*(-n+1)*a(n-1) +9*(n-2)*a(n-2) -6*a(n-3) +(-n+8) * a(n-4) +2*(-n+4)*a(n-5) +(-n+6)*a(n-6)=0. - R. J. Mathar, Jun 06 2016