cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273722 The number of valleys of width 1 (i.e., DHU configurations, where U=(0,1), H(1,0), D=(0,-1)) in all bargraphs of semiperimeter n (n>=2).

Original entry on oeis.org

0, 0, 0, 0, 1, 7, 34, 143, 558, 2083, 7559, 26913, 94547, 328943, 1136218, 3903245, 13352270, 45524764, 154811018, 525345268, 1779722313, 6020903806, 20346143381, 68691126090, 231732871764, 781268589267, 2632605033729, 8867115559325, 29855369535397
Offset: 2

Views

Author

Emeric Deutsch, Jun 01 2016

Keywords

Examples

			a(4)=0 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3]  and the corresponding drawings show that they have no 1-width valleys.
a(6)=1 because there is only one bargraph of semiperimeter 6 having a 1-width valley (it corresponds to the composition [2,1,2]).
		

Crossrefs

Programs

  • Maple
    Q:=sqrt(1-4*z+2*z^2+z^4): g:=((1-5*z+6*z^2-z^3+z^4-(1-3*z+z^2)*Q)*(1/2))/(z*Q): gser:= series(g,z=0,40): seq(coeff(gser, z, n), n = 2 .. 35);
  • Mathematica
    terms = 29;
    g[z_] = (1 - 5z + 6z^2 - z^3 + z^4 - (1 - 3z + z^2) Q)/(2z Q) /. Q -> Sqrt[1 - 4z + 2z^2 + z^4];
    Drop[CoefficientList[g[z] + O[z]^(terms+2), z], 2] (* Jean-François Alcover, Aug 07 2018 *)

Formula

G.f.: g(z)=(1-5z+6z^2-z^3+z^4-(1-3z+z^2)Q)/(2zQ), where Q = sqrt(1-4z+2z^2+z^4).
a(n) = Sum_{k >= 1} k*A273721(n,k).
Conjecture: -(n-6) *(2*n-7) *(2*n-9) *(n+1)*a(n) +2*(n-3) *(2*n-9) *(4*n^2-24*n+21)*a(n-1) +2*(-4*n^4+56*n^3-289*n^2+651*n-547) *a(n-2) +4*(2*n-5) *(n-4)*a(n-3) -(n-4) *(n-5) *(2*n-5) *(2*n-7) *a(n-4)=0. - R. J. Mathar, Jun 02 2016
Showing 1-1 of 1 results.