cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273721 Triangle read by rows: T(n,k) is the number of bargraphs of semiperimeter n having k valleys of width 1 (i.e., DHU configurations, where U=(0,1), H=(1,0), D=(0,-1)), (n>=2, k>=0).

Original entry on oeis.org

1, 2, 5, 13, 34, 1, 90, 7, 241, 34, 652, 141, 1, 1780, 536, 11, 4899, 1929, 77, 13581, 6690, 433, 1, 37893, 22601, 2132, 16, 106340, 74898, 9598, 151, 299978, 244632, 40517, 1091, 1, 850187, 790144, 162988, 6670, 22, 2419788, 2529873, 631655, 36330, 268
Offset: 2

Views

Author

Emeric Deutsch, Jun 01 2016

Keywords

Comments

Sum of entries in row n = A082582(n).
T(n,0) = A023425(n+2).
Sum_{k>=0} k*T(n,k) = A273722(n).

Examples

			Row 4 is 5 because the 5 (=A082582(4)) bargraphs of semiperimeter 4 correspond to the compositions [1,1,1], [1,2], [2,1], [2,2], [3] and the corresponding drawings show that they have no 1-width valleys.
T(6,1) = 1 because there is only one bargraph of semiperimeter 6 having a 1-width valley (it corresponds to the composition [2,1,2]).
Triangle starts
1;
2;
5;
13;
34, 1;
		

Crossrefs

Programs

  • Maple
    eq := z*(t+z-t*z)*G^2-(1-2*z-z^2-z^3+t*z^3)*G+z^2 = 0: G := RootOf(eq, G): Gser := simplify(series(G, z = 0, 25)): for n from 2 to 22 do P[n] := sort(coeff(Gser, z, n)) end do: for n from 2 to 22 do seq(coeff(P[n], t, j), j = 0 .. degree(P[n])) end do; # yields sequence in triangular form
    # second Maple program:
    b:= proc(n, y, t, h) option remember; expand(
          `if`(n=0, (1-t), `if`(t<0, 0, b(n-1, y+1, 1, 0)*z^h)+
          `if`(t>0 or y<2, 0, b(n, y-1, -1, 0))+
          `if`(y<1, 0, b(n-1, y, 0, `if`(t<0, 1, 0)))))
        end:
    T:= n-> (p-> seq(coeff(p, z, i), i=0..degree(p)))(b(n, 0$3)):
    seq(T(n), n=2..22);  # Alois P. Heinz, Jun 06 2016
  • Mathematica
    b[n_, y_, t_, h_] := b[n, y, t, h] = Expand[If[n == 0, (1 - t), If[t < 0, 0, b[n - 1, y + 1, 1, 0]*z^h] + If[t > 0 || y < 2, 0, b[n, y - 1, -1, 0]] + If[y < 1, 0, b[n - 1, y, 0, If[t < 0, 1, 0]]]]]; T[n_] := Function[p, Table[Coefficient[p, z, i], {i, 0, Exponent[p, z]}]][b[n, 0, 0, 0]]; Table[T[n], {n, 2, 22}] // Flatten (* Jean-François Alcover, Nov 29 2016 after Alois P. Heinz *)

Formula

G.f.: G=G(t,z), where t marks number of 1-width valleys and z marks semiperimeter, satisfies z(t+z-tz)G^2-(1-2z-z^2-z^3+tz^3)G+z^2 = 0.
For p-width valleys, the corresponding g.f. satisfies aG^2 - bG + c = 0, where a = z-(1-t)(1-z)z^p, b = 1-2z-z^2(1+z^p-tz^p), c=z^2.
Showing 1-1 of 1 results.