cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273712 Number A(n,k) of k-ary heaps on n levels; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 1, 0, 1, 1, 6, 80, 1, 0, 1, 1, 24, 7484400, 21964800, 1, 0, 1, 1, 120, 3892643213082624, 35417271278873496315860673177600000000, 74836825861835980800000, 1, 0
Offset: 0

Views

Author

Alois P. Heinz, May 28 2016

Keywords

Examples

			Square array A(n,k) begins:
  1, 1,        1,                                      1, ...
  1, 1,        1,                                      1, ...
  0, 1,        2,                                      6, ...
  0, 1,       80,                                7484400, ...
  0, 1, 21964800, 35417271278873496315860673177600000000, ...
		

Crossrefs

Columns k=0-4 give: A019590(n+1), A000012, A056972, A273723, A273725.
Main diagonal gives A273729.
Cf. A273693.

Programs

  • Maple
    with(combinat):
    b:= proc(n, k) option remember; local h, i, x, y, z;
          if n<2 then 1 elif k<2 then k
        else h:= ilog[k]((k-1)*n+1);
             if k^h=(k-1)*n+1 then b((n-1)/k, k)^k*
                multinomial(n-1, ((n-1)/k)$k)
           else x, y:=(k^h-1)/(k-1), (k^(h-1)-1)/(k-1);
                for i from 0 do z:= (n-1)-(k-1-i)*y-i*x;
                  if y<=z and z<=x then b(y, k)^(k-1-i)*
                     multinomial(n-1, y$(k-1-i), x$i, z)*
                     b(x, k)^i*b(z, k); break fi
                od
          fi fi
        end:
    A:= (n, k)-> `if`(n<2, 1, `if`(k<2, k, b((k^n-1)/(k-1), k))):
    seq(seq(A(n,d-n), n=0..d), d=0..7);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!);
    b[n_, k_] := b[n, k] = Module[{h, i, x, y, z}, Which[n<2, 1, k<2, k, True, h = Log[k, (k-1)*n+1] // Floor; If[k^h == (k-1)*n+1, b[(n-1)/k, k]^k*multinomial[n-1, Array[(n-1)/k&, k]], {x, y} := {(k^h-1)/(k-1), (k^(h-1)-1)/(k-1)}; For[i = 0, True, i++, z = (n-1) - (k-1-i)*y - i*x; If[y <= z && z <= x, b[y, k]^(k-1-i) * multinomial[n-1, Join[Array[y&, k-1-i], Array[x&, i], {z}]]*b[x, k]^i * b[z, k]; Break[]]]]]];
    A[n_, k_] := If[n<2, 1, If[k<2, k, b[(k^n-1) / (k-1), k]]];
    Table[A[n, d-n], {d, 0, 7}, {n, 0, d}] // Flatten (* Jean-François Alcover, Jan 24 2017, after Alois P. Heinz *)

A381865 Number of sequences in which the matches of a fully symmetric single-elimination tournament with 3^n players can be played if arbitrarily many matches can occur simultaneously and each match involves 3 players.

Original entry on oeis.org

1, 1, 13, 308682013, 20447648974223714249697186722386536049691073
Offset: 0

Views

Author

Noah A Rosenberg, Mar 08 2025

Keywords

Comments

a(n) is also the number of tie-permitting labeled histories for a fully symmetric strictly trifurcating labeled topology with 3^n leaves.

Examples

			Two of the 13 cases with n=2 and 3^2=9 players are: (1) (A,B,C) play, then (D,E,F) play, then (G,H,I) play, then the winners of the three matches play; (2) (A,B,C) play simultaneously with (D,E,F), then the winners of these two matches play against G, then the winner plays against H and I.
		

Crossrefs

Cf. A273723 (if matches must be non-simultaneous), A379758 (if matches involve only two players at a time).
Showing 1-2 of 2 results.