A117571 Expansion of (1+2*x^2)/((1-x)*(1-x^3)).
1, 1, 3, 4, 4, 6, 7, 7, 9, 10, 10, 12, 13, 13, 15, 16, 16, 18, 19, 19, 21, 22, 22, 24, 25, 25, 27, 28, 28, 30, 31, 31, 33, 34, 34, 36, 37, 37, 39, 40, 40, 42, 43, 43, 45, 46, 46, 48, 49, 49, 51, 52, 52, 54, 55, 55, 57, 58, 58, 60, 61, 61, 63, 64, 64, 66, 67, 67, 69, 70, 70, 72
Offset: 0
Links
- Kival Ngaokrajang, Illustration of initial terms
- Burkard Polster, Times Tables, Mandelbrot and the Heart of Mathematics, Mathologer video (2015).
- Index entries for linear recurrences with constant coefficients, signature (1,0,1,-1).
Crossrefs
Programs
-
Magma
[1 + Floor(2*n/3) + Floor((n+1)/3) : n in [0..100]]; // Wesley Ivan Hurt, Jul 25 2016
-
Maple
A117571:=n->1 + floor(2*n/3) + floor((n+1)/3): seq(A117571(n), n=0..100); # Wesley Ivan Hurt, Jul 25 2016
-
Mathematica
CoefficientList[Series[(1 + 2 x^2)/((1 - x) (1 - x^3)), {x, 0, 71}], x] (* Michael De Vlieger, May 13 2016 *)
Formula
G.f.: (1+2*x^2)/((1-x)*(1-x^3)).
a(n) = a(n-1) + a(n-3) - a(n-4) for n>3.
a(n) = cos(2*Pi*n/3+Pi/6)/sqrt(3)-sin(2*Pi*n/3+Pi/6)/3+(3n+2)/3.
a(n) = Sum_{k=0..n} 2*A001045(L((n-k+2)/3)) where L(j/p) is the Legendre symbol of j and p.
a(n) = 1 + floor((n+1)/3) + floor(2*n/3). - Wesley Ivan Hurt, Jul 25 2016
a(n) = n+sign((n-1) mod 3). - Wesley Ivan Hurt, Sep 25 2017
Comments