cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A273730 Square array read by antidiagonals: A(n,k) = number of permutations of n elements divided by the number of k-ary heaps on n+1 elements, n>=0, k>=1.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 1, 1, 1, 6, 1, 1, 1, 2, 24, 1, 1, 1, 1, 3, 120, 1, 1, 1, 1, 2, 6, 720, 1, 1, 1, 1, 1, 3, 9, 5040, 1, 1, 1, 1, 1, 2, 4, 24, 40320, 1, 1, 1, 1, 1, 1, 3, 8, 45, 362880, 1, 1, 1, 1, 1, 1, 2, 4, 12, 108, 3628800, 1, 1, 1, 1, 1, 1, 1, 3, 5, 16, 189, 39916800
Offset: 0

Views

Author

Alois P. Heinz, May 28 2016

Keywords

Examples

			Square array A(n,k) begins:
:     1,  1,  1, 1, 1, 1, 1, 1, ...
:     1,  1,  1, 1, 1, 1, 1, 1, ...
:     2,  1,  1, 1, 1, 1, 1, 1, ...
:     6,  2,  1, 1, 1, 1, 1, 1, ...
:    24,  3,  2, 1, 1, 1, 1, 1, ...
:   120,  6,  3, 2, 1, 1, 1, 1, ...
:   720,  9,  4, 3, 2, 1, 1, 1, ...
:  5040, 24,  8, 4, 3, 2, 1, 1, ...
: 40320, 45, 12, 5, 4, 3, 2, 1, ...
		

Crossrefs

Programs

  • Maple
    with(combinat):
    b:= proc(n, k) option remember; local h, i, x, y, z;
          if n<2 then 1 elif k<2 then k
        else h:= ilog[k]((k-1)*n+1);
             if k^h=(k-1)*n+1 then b((n-1)/k, k)^k*
                multinomial(n-1, ((n-1)/k)$k)
           else x, y:=(k^h-1)/(k-1), (k^(h-1)-1)/(k-1);
                for i from 0 do z:= (n-1)-(k-1-i)*y-i*x;
                  if y<=z and z<=x then b(y, k)^(k-1-i)*
                     multinomial(n-1, y$(k-1-i), x$i, z)*
                     b(x, k)^i*b(z, k); break fi
                od
          fi fi
        end:
    A:= (n, k)-> n!/b(n+1, k):
    seq(seq(A(n, 1+d-n), n=0..d), d=0..14);
  • Mathematica
    multinomial[n_, k_List] := n!/Times @@ (k!); b[n_, k_] := b[n, k] = Module[{h, i, x, y, z}, Which[n<2, 1, k<2, k, True, h = Floor @ Log[k, (k - 1)*n + 1]; If [k^h == (k-1)*n+1, b[(n-1)/k, k]^k*multinomial[n-1, Array[(n-1)/k&, k]], {x, y} = {(k^h-1)/(k-1), (k^(h-1)-1)/(k-1)}; For[i = 0, True, i++, z = (n-1) - (k-1-i)*y - i*x; If[y <= z && z <= x, b[y, k]^(k-1-i)*multinomial[n-1, Join[Array[y&, k-1-i], Array[x&, i], {z}]] * b[x, k]^i*b[z, k] // Return]]]]]; A[n_, k_] :=  n!/b[n+1, k]; Table[A[n, 1+d-n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, Mar 13 2017, translated from Maple *)

Formula

A(n,k) = A000142(n)/A273693(n+1,k).
Showing 1-1 of 1 results.