A273785 Numbers n where a composite c < n exists such that n^(c-1) == 1 (mod c^2), i.e., such that c is a "base-n Wieferich pseudoprime".
17, 26, 33, 37, 49, 65, 73, 80, 81, 82, 97, 99, 101, 109, 113, 129, 145, 146, 161, 163, 168, 170, 177, 181, 182, 193, 197, 199, 201, 209, 217, 224, 225, 226, 239, 241, 242, 244, 251, 253, 257, 268, 273, 289, 293, 301, 305, 321, 323, 325, 337, 353, 360, 361
Offset: 1
Keywords
Examples
15 satisfies the congruence 26^(15-1) == 1 (mod 15^2) and 15 < 26, so 26 is a term of the sequence.
Links
- Robert Israel, Table of n, a(n) for n = 1..5000
Programs
-
Maple
N:= 1000: # to get all terms <= N Res:= {}: for c from 4 to N-1 do if not isprime(c) then for m in map(rhs@op, [msolve(x^(c-1)-1, c^2)]) do if m > c and m <= N then Res:= Res union {m, seq(k*c^2+m, k=1..(N-m)/c^2)} else Res:= Res union {seq(k*c^2+m, k=1..(N-m)/c^2)} fi od fi od: sort(convert(Res,list)); # Robert Israel, Apr 20 2017
-
Mathematica
nn = 361; c = Select[Range@ nn, CompositeQ]; Select[Range@ nn, Function[n, Count[TakeWhile[c, # <= n &], k_ /; Mod[n^(k - 1), k^2] == 1] > 0]] (* Michael De Vlieger, May 30 2016 *)
-
PARI
is(n) = forcomposite(c=1, n-1, if(Mod(n, c^2)^(c-1)==1, return(1))); return(0)
Comments