A273801 Numbers n for which n = (x - phi(x)) * (y - phi(y)), where n = x + y and x - phi(x) is the Euler cototient function of x.
16, 24, 32, 48, 56, 72, 80, 96, 120, 128, 152, 168, 176, 192, 216, 240, 248, 272, 288, 296, 320, 336, 360, 392, 408, 416, 432, 440, 456, 512, 528, 552, 560, 600, 608, 632, 656, 672, 696, 720, 728, 768, 776, 792, 800, 848, 896, 912, 920, 936, 960, 968, 1008, 1032
Offset: 1
Keywords
Examples
16 = 4 + 12 = (4 - phi(4)) * (12 - phi(12)) = 2 * 8 = 16 and also 16 = 8 + 8 = (8 - phi(8)) * (8 - phi(8)) = 4 * 4 = 16; 24 = 4 + 20 = (4 - phi(4)) * (20 - phi(20)) = 2 * 12 = 24.
Links
- Paolo P. Lava, Table of n, a(n) for n = 1..200
Programs
-
Maple
with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do for k from 1 to trunc(n/2) do if (k-phi(k))*(n-k-phi(n-k))=n then print(n); break; fi; od; od; end: P(10^9);
-
Mathematica
Select[Range@ 1032, Function[n, Length@ Select[Times @@ Map[(# - EulerPhi@ #) &, {#, n - #}] & /@ Range[0, Floor[n/2]], # == n &] > 0]] (* Michael De Vlieger, Jun 01 2016 *)
Formula
a(n) = 4*(prime(n+1) + 1). - Paolo P. Lava, Sep 06 2017