cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273801 Numbers n for which n = (x - phi(x)) * (y - phi(y)), where n = x + y and x - phi(x) is the Euler cototient function of x.

Original entry on oeis.org

16, 24, 32, 48, 56, 72, 80, 96, 120, 128, 152, 168, 176, 192, 216, 240, 248, 272, 288, 296, 320, 336, 360, 392, 408, 416, 432, 440, 456, 512, 528, 552, 560, 600, 608, 632, 656, 672, 696, 720, 728, 768, 776, 792, 800, 848, 896, 912, 920, 936, 960, 968, 1008, 1032
Offset: 1

Views

Author

Paolo P. Lava, May 31 2016

Keywords

Examples

			16 = 4 + 12 = (4 - phi(4)) * (12 - phi(12)) = 2 * 8 = 16 and also
16 = 8 + 8 = (8 - phi(8)) * (8 - phi(8)) = 4 * 4 = 16;
24 = 4 + 20 = (4 - phi(4)) * (20 - phi(20)) = 2 * 12 = 24.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do
    for k from 1 to trunc(n/2) do if (k-phi(k))*(n-k-phi(n-k))=n then print(n); break; fi;
    od; od; end: P(10^9);
  • Mathematica
    Select[Range@ 1032, Function[n, Length@ Select[Times @@ Map[(# - EulerPhi@ #) &, {#, n - #}] & /@ Range[0, Floor[n/2]], # == n &] > 0]] (* Michael De Vlieger, Jun 01 2016 *)

Formula

a(n) = 4*(prime(n+1) + 1). - Paolo P. Lava, Sep 06 2017