cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273800 Numbers n for which n = phi(x)*phi(y), where n = x + y and phi(x) is the Euler totient function of x.

Original entry on oeis.org

8, 12, 16, 24, 32, 36, 48, 96, 128, 160, 192, 288, 768, 1152, 2048, 2560, 3072, 27648, 110592, 192704, 196608, 202496, 232448, 370688, 379904, 394264, 443512, 466048, 508672, 524288, 553120, 571008, 586016, 607744, 624704, 650624, 655360, 675584, 681856
Offset: 1

Views

Author

Paolo P. Lava, May 31 2016

Keywords

Examples

			8 = 3+5 = phi(3)*phi(5) = 2*4;
12 = 3+9 = phi(3)*phi(9) = 2*6;
24 = 3+21 = phi(3)*phi(21) = 2*12 or 24 = 10+14 = phi(10)*phi(14) = 4*6.
		

Crossrefs

Programs

  • Maple
    with(numtheory): P:=proc(q) local a,b,k,n; for n from 1 to q do
    for k from 1 to trunc(n/2) do if phi(k)*phi(n-k)=n then print(n); break; fi;
    od; od; end: P(10^9);
  • PARI
    is(n)=for(x=1,n\2, if(eulerphi(x)+eulerphi(n-x)==n, return(1))); 0 \\ Charles R Greathouse IV, Jun 07 2016

Extensions

a(19)-a(39) from Giovanni Resta, May 31 2016

A289055 Triangle read by rows: T(n,k) = (k+1)*A028815(n) for 0 <= k <= n.

Original entry on oeis.org

2, 3, 6, 4, 8, 12, 6, 12, 18, 24, 8, 16, 24, 32, 40, 12, 24, 36, 48, 60, 72, 14, 28, 42, 56, 70, 84, 98, 18, 36, 54, 72, 90, 108, 126, 144, 20, 40, 60, 80, 100, 120, 140, 160, 180, 24, 48, 72, 96, 120, 144, 168, 192, 216, 240, 30, 60, 90, 120, 150, 180, 210, 240, 270, 300, 330
Offset: 0

Views

Author

Vincenzo Librandi, Sep 02 2017

Keywords

Examples

			Triangle begins:
   2;
   3,   6;
   4,   8,  12;
   6,  12,  18,  24;
   8,  16,  24,  32,  40;
  12,  24,  36,  48,  60,  72;
  14,  28,  42,  56,  70,  84,  98;
  18,  36,  54,  72,  90, 108, 126, 144;
  20,  40,  60,  80, 100, 120, 140, 160, 180;
  ...
		

Crossrefs

Cf. A289108.
Columns k: A028815 (k=0), A089241 (k=1), A247159 (k=2), A273801 (k=3).

Programs

  • Magma
    /* As triangle (here NthPrime(0)=1) */ [[(k+1)*(NthPrime(n)+1): k in [0..n]]: n in [0.. 15]];
    
  • Mathematica
    Join[{2}, t[n_, k_] := (k + 1) (Prime[n] + 1); Table[t[n, k], {n, 10}, {k, 0, n}] //Flatten]
  • SageMath
    def A289055(n,k): return 2 if n==0 else (k+1)*(nth_prime(n) +1)
    flatten([[A289055(n,k) for k in range(n+1)] for n in range(13)]) # G. C. Greubel, Aug 05 2024

Formula

a(n) = A289108(n) + 1.
Showing 1-2 of 2 results.