A273821 Triangle read by rows: T(n,k) is the number of 123-avoiding permutations p of [n] (A000108) such that k is maximal with the property that the k largest entries of p, taken in order, avoid 132.
1, 0, 2, 0, 1, 4, 0, 3, 3, 8, 0, 9, 10, 7, 16, 0, 28, 32, 25, 15, 32, 0, 90, 104, 84, 56, 31, 64, 0, 297, 345, 283, 195, 119, 63, 128, 0, 1001, 1166, 965, 676, 425, 246, 127, 256, 0, 3432, 4004, 3333, 2359, 1506, 894, 501, 255, 512
Offset: 1
Examples
For example, for the 123-avoiding permutation p = 42513, the 3 largest entries, 453, avoid 132 but the 4 largest entries, 4253, do not, and so p is counted by T(5,3). Triangle begins: 1 0 2 0 1 4 0 3 3 8 0 9 10 7 16 0, 28, 32, 25, 15, 32 ...
Crossrefs
Programs
-
Mathematica
Map[Rest, Rest[Map[CoefficientList[#, y] &, CoefficientList[ Normal[Series[ c - 1 + ((1 - y) (1 - x y) (1 - (1 - x y) c ))/((1 - 2 x y) (1 - y + x y^2)) /. {c :> (1 - Sqrt[1 - 4 x])/(2 x)}, {x, 0, 10}, {y, 0, 10}]], x]]]] u[1, 1] = 1; u[2, 2] = 2; u[n_, 1] /; n > 1 := 0; u[n_, k_] /; n < 1 || k < 1 || k > n := 0; u[n_, k_] /; n >= 3 && 2 <= k <= n := u[n, k] = 3 u[n - 1, k - 1] - 2 u[n - 2, k - 2] + u[n, k + 1] - 2 u[n - 1, k] + If[k == 2, CatalanNumber[n - 2], 0]; Table[u[n, k], {n, 10}, {k, n}]
Formula
G.f.: Sum_{n>=1, 1<=k<=n} T(n,k) x^n y^k = C(x) - 1 + ((1 - y) (1 - x y) (1 - (1 - x y)C(x)))/((1 - 2 x y) (1 - y + x y^2) ) where C(x) = 1 + x + 2x^2 + 5x^3 + ... is the g.f. for the Catalan numbers A000108 (conjectured).
Comments