A273874 Least positive integer k such that k^2 + (k+1)^2 + ... + (k+n-2)^2 + (k+n-1)^2 is the sum of two nonzero squares. a(n) = 0 if no solution exists.
5, 1, 2, 0, 2, 0, 0, 0, 0, 2, 5, 1, 12, 0, 3, 0, 3, 0, 0, 0, 0, 0, 53, 1, 1, 1, 2, 0, 4, 0, 0, 0, 5, 2, 0, 0, 2, 0, 3, 0, 5, 0, 0, 5, 0, 0, 73, 1, 3, 1, 2, 0, 2, 0, 5, 0, 0, 2, 97, 1, 4, 0, 0, 0, 2, 5, 0, 0, 30, 0, 0, 0, 1, 1, 4, 0, 0, 0, 0, 0, 0, 2, 26, 0, 6
Offset: 1
Keywords
Examples
a(1) = 5 because 5^2 = 3^2 + 4^2. a(3) = 2 because 2^2 + 3^2 + 4^2 = 2^2 + 5^2.
Extensions
a(7)-a(50) from Giovanni Resta, Jun 02 2016
More terms from Jinyuan Wang, May 02 2021
Comments