cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273905 Number of symmetric bargraphs having semiperimeter n (n>=2).

Original entry on oeis.org

1, 2, 3, 5, 9, 15, 27, 46, 83, 143, 259, 450, 817, 1429, 2599, 4570, 8323, 14698, 26797, 47491, 86659, 154042, 281287, 501283, 915907, 1635835, 2990383, 5351138, 9786369, 17541671, 32092959, 57610988, 105435607, 189521640, 346950321, 624389105
Offset: 2

Views

Author

Emeric Deutsch and Sergi Elizalde, Jun 23 2016

Keywords

Examples

			a(4) = 3; indeed, the corresponding compositions are [3],[2,2],[1,1,1].
a(6) = 9; indeed, the corresponding compositions are [5],[4,4],[1,3,1],[2,3,2],[2,1,2],[3,3,3],[2,2,2,2],[1,2,2,1],[1,1,1,1,1].
		

Programs

  • Maple
    Q := sqrt((1-z^2)*(1-z-z^2-z^3)*(1+z-z^2+z^3)): g := (1/2)*(1+z)*(z^4+2*z^3+2*z^2-1+Q)/(z*(1-z-z^2-z^3)): gser := series(g, z = 0, 42): seq(coeff(gser,z,n), n=2..37);
    # second Maple program:
    a:= proc(n) option remember; `if`(n<9, [$0..3, 5, 9, 15, 27]
          [n], (2*a(n-1) +(4*n-6)*a(n-2) -(2*n-12)*a(n-4)
          -6*a(n-5) +2*a(n-6) -(n-9)*a(n-8))/ (n+1))
        end:
    seq(a(n), n=2..40);  # Alois P. Heinz, Jun 24 2016
  • Mathematica
    a[2]=1; a[3]=2; a[4]=3; a[5]=5; a[6]=9; a[7]=15; a[8]=27; a[n_ /; n>8] := a[n] = ((9-n)*a[n-8] + 2*a[n-6] - 6*a[n-5] + (12-2*n)*a[n-4] + (4*n-6)*a[n-2] + 2*a[n-1])/(n+1); Table[a[n], {n, 2, 40}] (* Jean-François Alcover, Dec 02 2016, after Alois P. Heinz *)

Formula

G.f.: g(z)=(1+z)(z^4+2z^3+2z^2-1+Q)/(2z(1-z-z^2-z^3)), where Q = sqrt((1-z^2)(1-z-z^2-z^3)(1+z-z^2+z^3)).
Conjecture D-finite with recurrence (n+1)*a(n) +2*(-1)*a(n-1) +2*(-2*n+3)*a(n-2) +2*(n-6)*a(n-4) +6*(1)*a(n-5) -2*a(n-6) +(n-9)*a(n-8)=0. - R. J. Mathar, Jul 22 2022
a(n) ~ sqrt(2*r*(2-3*r)) * (25 + 18*r + 13*r^2) * (1 + r + r^2)^n / (22*sqrt(Pi*n)), where r = A192918. - Vaclav Kotesovec, Mar 08 2023