cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273913 Consider the sequence b(k) with initial values b(1) = 1 and b(2) = n and satisfying b(k) = b(k-1) + Pd(b(k-2)), where Pd(x) is the product of the digits of x. Then b(k) eventually becomes constant, and this constant is a(n).

Original entry on oeis.org

1902, 1902, 730, 230, 550, 420, 502, 1902, 2150, 1074, 1074, 1074, 1902, 1902, 8170, 730, 550, 730, 600, 230, 80, 230, 470, 550, 1074, 4045, 4990, 180, 230, 106, 90, 4990, 1062, 102, 902, 1230, 730, 108, 1406, 1017, 1410, 630, 2038, 505, 230, 1810, 150, 2306, 630
Offset: 1

Views

Author

Paolo P. Lava, Jun 17 2016

Keywords

Comments

Maximum value in the first 10^5 terms is a(6874) = 209875, from b(128) on.
First n's whose last repetitive number of the sequence b(k) is a multiple: 1, 2, 5, 6, 34, 42, 135, 195, 460, 893, 2370, 4230, 7165, 237945.

Examples

			b(1) = 1, b(2) = 7. Then:
b(3) = 7 + Pd(1) = 7+1 = 8; b(4) = 8 + Pd(7) = 8+7 = 15;
b(5) = 15 + Pd(8) = 15+8 = 23; b(6) = 23 + Pd(15) = 23+5 = 28;
b(7) = 28 + Pd(23) = 28+6 = 34; b(8) = 34 + Pd(28) = 34+16 = 50;
…
b(19) = 270 + Pd(214) = 270+8 = 278; b(20) = 278 + Pd(270) = 278+0 = 278;
b(21) = 278 + Pd(278) = 278+112 = 390; b(22) = 390 + Pd(278) = 390+112 = 502;
b(23) = 502 + Pd(502) = 502+0 = 502; therefore a(7) = 502.
		

Crossrefs

Programs

  • Maple
    with(numtheory); T:=proc(w) local x, y, z; x:=w; y:=1;
    for z from 1 to ilog10(x)+1 do y:=y*(x mod 10); x:=trunc(x/10); od; y; end:
    P:=proc(q) local a1,a2,a3,n; for n from 1 to q do a1:=1; a2:=n; a3:=T(a1)+a2;
    while not (a1=a2 and a2=a3) do a1:=a2; a2:=a3; a3:=T(a1)+a2; od;  print(a1);
    od; end: P(10^7);
  • Mathematica
    a[n_] := Block[{b=0, c=1, d=n, p}, While[! (b == c == d), b=c; p = Times @@ IntegerDigits@ c; c = d; d += p]; d]; Array[a, 50] (* Giovanni Resta, Jun 20 2016 *)
  • PARI
    pd(n) = my(d=digits(n)); prod(k=1, #d, d[k]);
    a(n) = {ba = 1; bb = n; bc = bb + pd(ba); while (!((ba ==bb) && (bc == bb)), newb = bb + pd(ba); ba = bb; bb = bc; bc = bb + pd(ba);); bc;} \\ Michel Marcus, Jun 20 2016