A273915 Number of ordered ways to write n as w^5 + x^2 + y^2 + z^2, where w,x,y,z are nonnegative integers with x <= y <= z.
1, 2, 2, 2, 2, 2, 2, 1, 1, 3, 3, 2, 2, 2, 2, 1, 1, 3, 4, 3, 2, 2, 2, 1, 1, 3, 4, 4, 2, 2, 3, 1, 2, 4, 5, 4, 4, 4, 4, 2, 2, 6, 5, 3, 3, 4, 4, 1, 2, 5, 7, 6, 4, 4, 6, 3, 2, 5, 5, 5, 2, 4, 5, 2, 2, 6, 8, 5, 5, 5, 5, 1, 3, 7, 6, 6, 4, 5, 4, 1, 2
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 0^5 + 0^2 + 0^2 + 0^2. a(7) = 1 since 7 = 1^5 + 1^2 + 1^2 + 2^2. a(8) = 1 since 8 = 0^5 + 0^2 + 2^2 + 2^2. a(15) = 1 since 15 = 1^5 + 1^2 + 2^2 + 3^2. a(16) = 1 since 16 = 0^5 + 0^2 + 0^2 + 4^2. a(23) = 1 since 23 = 1^5 + 2^2 + 3^2 + 3^2. a(24) = 1 since 24 = 0^2 + 2^2 + 2^2 + 4^2. a(31) = 1 since 31 = 1^5 + 1^2 + 2^2 + 5^2. a(47) = 1 since 47 = 1^5 + 1^2 + 3^2 + 6^2. a(71) = 1 since 71 = 1^5 + 3^2 + 5^2 + 6^2. a(79) = 1 since 79 = 1^5 + 2^2 + 5^2 + 7^2. a(92) = 1 since 92 = 1^5 + 1^2 + 3^2 + 9^2. a(112) = 1 since 112 = 2^5 + 0^2 + 4^2 + 8^2. a(143) = 1 since 143 = 1^5 + 5^2 + 6^2 + 9^2. a(191) = 1 since 191 = 1^5 + 3^2 + 9^2 + 10^2. a(240) = 1 since 240 = 2^5 + 0^2 + 8^2 + 12^2.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016-2017.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190.
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-w^5-x^2-y^2],r=r+1],{w,0,n^(1/5)},{x,0,Sqrt[(n-w^5)/3]},{y,x,Sqrt[(n-w^5-x^2)/2]}];Print[n," ",r];Label[aa];Continue,{n,0,80}]
Comments