A272979 Number of ways to write n as x^2 + 2*y^2 + 3*z^3 + 4*w^4 with x,y,z,w nonnegative integers.
1, 1, 1, 2, 3, 2, 3, 3, 3, 4, 2, 3, 4, 3, 1, 3, 4, 1, 3, 3, 2, 3, 4, 2, 3, 5, 3, 4, 4, 3, 4, 4, 4, 4, 4, 2, 7, 5, 2, 4, 6, 4, 3, 4, 3, 3, 4, 3, 4, 2, 3, 6, 3, 3, 5, 5, 2, 7, 5, 1, 5, 6, 3, 1, 6, 2, 5, 5, 5, 4, 5
Offset: 0
Keywords
Examples
a(0) = 1 since 0 = 0^2 + 2*0^2 + 3*0^3 + 4*0^4. a(1) = 1 since 1 = 1^2 + 2*0^2 + 3*0^3 + 4*0^4. a(2) = 1 since 2 = 0^2 + 2*1^2 + 3*0^3 + 4*0^4. a(14) = 1 since 14 = 3^2 + 2*1^2 + 3*1^3 + 4*0^4. a(17) = 1 since 17 = 3^2 + 2*2^2 + 3*0^3 + 4*0^4. a(59) = 1 since 59 = 3^2 + 2*5^2 + 3*0^3 + 4*0^4. a(63) = 1 since 63 = 3^2 + 2*5^2 + 3*0^2 + 4*1^4. a(287) = 1 since 287 = 11^2 + 2*9^2 + 3*0^2 + 4*1^4.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 0..10000
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-4w^4-3z^3-2y^2],r=r+1],{w,0,(n/4)^(1/4)},{z,0,((n-4w^4)/3)^(1/3)},{y,0,((n-4w^4-3z^3)/2)^(1/2)}];Print[n," ",r];Continue,{n,0,100}]
Comments