A273917 Number of ordered ways to write n as w^2 + 3*x^2 + y^4 + z^5, where w is a positive integer and x,y,z are nonnegative integers.
1, 2, 1, 2, 4, 2, 1, 2, 2, 2, 1, 1, 3, 3, 1, 2, 5, 3, 1, 4, 4, 2, 2, 1, 2, 3, 1, 4, 8, 4, 1, 4, 4, 1, 1, 5, 8, 5, 3, 3, 3, 2, 1, 6, 6, 1, 1, 4, 7, 5, 3, 8, 10, 5, 2, 1, 3, 3, 2, 5, 5, 2, 3, 8, 8, 4, 2, 7, 8, 1, 1, 1, 3, 3, 2, 7, 7, 4, 3, 6
Offset: 1
Keywords
Examples
a(1) = 1 since 1 = 1^2 + 3*0^2 + 0^4 + 0^5. a(3) = 1 since 3 = 1^2 + 3*0^2 + 1^4 + 1^5. a(7) = 1 since 7 = 2^2 + 3*1^2 + 0^4 + 0^5. a(11) = 1 since 11 = 3^2 + 3*0^2 + 1^4 + 1^5. a(12) = 1 since 12 = 3^2 + 3*1^2 + 0^4 + 0^5. a(15) = 1 since 15 = 1^2 + 3*2^2 + 1^4 + 1^5. a(19) = 1 since 19 = 4^2 + 3*1^2 + 0^4 + 0^5. a(24) = 1 since 24 = 2^2 + 3*1^2 + 2^4 + 1^5. a(27) = 1 since 27 = 5^2 + 3*0^2 + 1^4 + 1^5. a(31) = 1 since 31 = 2^2 + 3*3^2 + 0^4 + 0^5. a(34) = 1 since 34 = 1^2 + 3*0^2 + 1^4 + 2^5. a(35) = 1 since 35 = 4^2 + 3*1^2 + 2^4 + 0^5. a(43) = 1 since 43 = 4^2 + 3*3^2 + 0^4 + 0^5. a(46) = 1 since 46 = 1^2 + 3*2^2 + 1^4 + 2^5. a(47) = 1 since 47 = 2^2 + 3*3^2 + 2^4 + 0^5. a(56) = 1 since 56 = 6^2 + 3*1^2 + 2^4 + 1^5. a(70) = 1 since 70 = 5^2 + 3*2^2 + 1^4 + 2^5. a(71) = 1 since 71 = 6^2 + 3*1^2 + 0^4 + 2^5. a(72) = 1 since 72 = 6^2 + 3*1^2 + 1^4 + 2^5. a(87) = 1 since 87 = 6^2 + 2*1^2 + 2^4 + 2^5. a(88) = 1 since 88 = 2^2 + 3*1^2 + 3^4 + 0^5. a(115) = 1 since 115 = 8^2 + 3*1^2 + 2^4 + 2^5. a(136) = 1 since 136 = 10^2 + 3*1^2 + 1^4 + 2^5. a(137) = 1 since 137 = 11^2 + 3*0^2 + 2^4 + 0^5. a(147) = 1 since 147 = 12^2 + 3*1^2 + 0^4 + 0^5. a(167) = 1 since 167 = 2^2 + 3*7^2 + 2^4 + 0^5. a(168) = 1 since 168 = 2^2 + 3*7^2 + 2^4 + 1^5. a(178) = 1 since 178 = 7^2 + 3*4^2 + 3^4 + 0^5. a(207) = 1 since 207 = 10^2 + 3*5^2 + 0^4 + 2^5. a(235) = 1 since 235 = 12^2 + 3*5^2 + 2^4 + 0^5. a(236) = 1 since 236 = 12^2 + 3*5^2 + 2^4 + 1^5. a(267) = 1 since 267 = 12^2 + 3*5^2 + 2^4 + 2^5. a(286) = 1 since 286 = 4^2 + 3*3^2 + 0^4 + 3^5. a(297) = 1 since 297 = 3^2 + 3*0^2 + 4^4 + 2^5. a(423) = 1 since 423 = 11^2 + 3*10^2 + 1^4 + 1^5. a(537) = 1 since 537 = 21^2 + 3*4^2 + 2^4 + 2^5. a(747) = 1 since 747 = 11^2 + 3*0^2 + 5^4 + 1^5. a(762) = 1 since 762 = 27^2 + 3*0^2 + 1^4 + 2^5. a(1017) = 1 since 1017 = 27^2 + 3*0^2 + 4^4 + 2^5.
Links
- Zhi-Wei Sun, Table of n, a(n) for n = 1..10000
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, arXiv:1604.06723 [math.NT], 2016-2017.
- Zhi-Wei Sun, Refining Lagrange's four-square theorem, J. Number Theory 175(2017), 167-190. (See Remark 1.1.)
- Zhi-Wei Sun, New conjectures on representations of integers (I), Nanjing Univ. J. Math. Biquarterly 34(2017), no. 2, 97-120. (See Conjecture 3.2.)
Crossrefs
Programs
-
Mathematica
SQ[n_]:=SQ[n]=IntegerQ[Sqrt[n]] Do[r=0;Do[If[SQ[n-3*x^2-y^4-z^5],r=r+1],{x,0,Sqrt[(n-1)/3]},{y,0,(n-1-3x^2)^(1/4)},{z,0,(n-1-3x^2-y^4)^(1/5)}];Print[n," ",r];Continue,{n,1,80}]
Comments