cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A273926 Given G(x) such that G( G(x)^2 - G(x)^3 ) = x^2, then G(x) = Sum_{n>=1} A273925(n)*x^n / 2^a(n).

Original entry on oeis.org

0, 1, 3, 2, 7, 4, 10, 5, 15, 8, 18, 9, 22, 11, 25, 12, 31, 16, 34, 17, 38, 19, 41, 20, 46, 23, 49, 24, 53, 26, 56, 27, 63, 32, 66, 33, 70, 35, 73, 36, 78, 39, 81, 40, 85, 42, 88, 43, 94, 47, 97, 48, 101, 50, 104, 51, 109, 54, 112, 55, 116, 57, 119, 58, 127, 64, 130, 65, 134, 67, 137, 68, 142, 71, 145, 72, 149, 74, 152, 75, 158, 79, 161, 80, 165, 82, 168, 83, 173, 86, 176, 87, 180, 89, 183, 90, 190, 95, 193, 96, 197, 98, 200, 99, 205, 102, 208, 103, 212, 105, 215, 106, 221, 110, 224, 111, 228, 113, 231, 114
Offset: 1

Views

Author

Paul D. Hanna, Jun 04 2016

Keywords

Comments

Terms appear to occur only once in the sequence.
Both bisections of this sequence appear to be monotonically increasing.

Examples

			G.f.: G(x) = x + 1/2*x^2 + 3/8*x^3 + 3/4*x^4 + 175/128*x^5 + 41/16*x^6 + 4947/1024*x^7 + 321/32*x^8 + 687611/32768*x^9 + 11403/256*x^10 + 25132181/262144*x^11 + 107305/512*x^12 + 1941554203/4194304*x^13 + 2111325/2048*x^14 + 77643067507/33554432*x^15 + 21427329/4096*x^16 + 25549683166419/2147483648*x^17 + 1782548851/65536*x^18 + 1073363084982753/17179869184*x^19 + 18891311061/131072*x^20 + 91744420207896017/274877906944*x^21 + 406630578535/524288*x^22 + 3975787925128277349/2199023255552*x^23 + 4432136534071/1048576*x^24 +...+ A273925(n)*x^n / 2^a(n) +...
such that G( G(x)^2 - G(x)^3 ) = x^2.
The bisections of this sequence begin:
odd bisection (cf. A120738): [0, 3, 7, 10, 15, 18, 22, 25, 31, 34, 38, 41, 46, 49, 53, 56, 63, 66, 70, 73, 78, 81, 85, 88, 94, 97, 101, 104, 109, 112, 116, 119, 127, 130, 134, 137, 142, 145, 149, 152, 158, 161, 165, 168, 173, 176, 180, 183, 190, 193, 197, 200, 205, 208, 212, 215, 221, 224, 228, 231, 236, 239, 243, 246, 255, ...].
even bisection (cf. A101925): [1, 2, 4, 5, 8, 9, 11, 12, 16, 17, 19, 20, 23, 24, 26, 27, 32, 33, 35, 36, 39, 40, 42, 43, 47, 48, 50, 51, 54, 55, 57, 58, 64, 65, 67, 68, 71, 72, 74, 75, 79, 80, 82, 83, 86, 87, 89, 90, 95, 96, 98, 99, 102, 103, 105, 106, 110, 111, 113, 114, 117, 118, 120, 121, 128, ...].
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=x); for(i=0,n, A = serreverse( sqrt(subst(A,x,x^2 - x^3 +x^2*O(x^n) )) )); valuation(denominator(polcoeff(A,n)),2)}
    for(n=1,60,print1(a(n),", "))

Formula

a(2*n-1) = A120738(n-1) = 4*(n-1) - A000120(n-1), for n>=0 (conjecture).
a(2*n) = A101925(n-1) = A005187(n-1) + 1, for n>=0 (conjecture).

A367384 Expansion of g.f. A(x) satisfying A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.

Original entry on oeis.org

1, 2, 16, 172, 2120, 28264, 396192, 5746480, 85394656, 1291778368, 19805198784, 306834276416, 4793670528640, 75415927948416, 1193652980090880, 18994846756882176, 303766882134726144, 4880209392051146752, 78739290124904116224, 1275444751485628848128, 20735204112205333970944
Offset: 1

Views

Author

Paul D. Hanna, Dec 29 2023

Keywords

Examples

			G.f.: A(x) = x + 2*x^2 + 16*x^3 + 172*x^4 + 2120*x^5 + 28264*x^6 + 396192*x^7 + 5746480*x^8 + 85394656*x^9 + 1291778368*x^10 + ...
where A( sqrt(A(x)^2 - 8*A(x)^3) ) = x.
RELATED SERIES.
A(x)^2 = x^2 + 4*x^3 + 36*x^4 + 408*x^5 + 5184*x^6 + 70512*x^7 + 1002864*x^8 + 14711456*x^9 + 220670592*x^10 + ...
A(x)^3 = x^3 + 6*x^4 + 60*x^5 + 716*x^6 + 9384*x^7 + 130344*x^8 + 1882576*x^9 + 27950736*x^10 + ...
Let Ai(x) be the series reversion of A(x), then
Ai(x)^2 = A(x)^2 - 8*A(x)^3 = x^2 - 4*x^3 - 12*x^4 - 72*x^5 - 544*x^6 - 4560*x^7 - 39888*x^8 - 349152*x^9 - 2935296*x^10 - ...
and
Ai(x) = sqrt(A(x)^2 - 8*A(x)^3) = x - 2*x^2 - 8*x^3 - 52*x^4 - 408*x^5 - 3512*x^6 - 31584*x^7 - 287056*x^8 - 2560288*x^9 - ...
Also,
A(A(x)) = x + 4*x^2 + 40*x^3 + 512*x^4 + 7392*x^5 + 114688*x^6 + 1867008*x^7 + 31457280*x^8 + 543921664*x^9 + ... + 2^n*A078531(n)*x^(n+1) + ...
which satisfies A(A(x))^2 - 8*A(A(x))^3 = x^2, where
A(A(x))^2 = x^2 + 8*x^3 + 96*x^4 + 1344*x^5 + 20480*x^6 + 329472*x^7 + ...
A(A(x))^3 = x^3 + 12*x^4 + 168*x^5 + 2560*x^6 + 41184*x^7 + 688128*x^8 + ...
		

Crossrefs

Programs

  • PARI
    {a(n) = my(A=1,V=[1]); for(i=1,n, V = concat(V,0); A = x*Ser(V);
    V[#V] = polcoeff( x - subst(A,x, sqrt(A^2 - 8*A^3)), #V)/2 );V[n]}
    for(n=1,30,print1(a(n),", "))

Formula

G.f. A(x) = Sum_{n>=1} a(n)*x^n satisfies the following formulas.
(1) x = A( sqrt(A(x)^2 - 8*A(x)^3) ).
(2) x^2 = A(A(x))^2 - 8*A(A(x))^3, where 2*A(A(x/2)) is the g.f. of A078531.
(3) [x^(n+1)] A(A(x)) = 8^n * binomial((3*n-1)/2, n)/(n+1) = 2^n*A078531(n) for n >= 0.
Showing 1-2 of 2 results.