A273948 Odd prime factors of generalized Fermat numbers of the form 7^(2^m) + 1 with m >= 0.
5, 17, 257, 353, 769, 1201, 12289, 13313, 35969, 65537, 114689, 163841, 169553, 7699649, 9379841, 11886593, 28667393, 64749569, 70254593, 134818753, 197231873, 4643094529, 19847446529, 47072139617, 206158430209, 452850614273, 531968664833, 943558259713
Offset: 1
Keywords
References
- Hans Riesel, Common prime factors of the numbers A_n=a^(2^n)+1, BIT 9 (1969), pp. 264-269.
Links
- Arkadiusz Wesolowski, Table of n, a(n) for n = 1..34
- Anders Björn and Hans Riesel, Factors of generalized Fermat numbers, Math. Comp. 67 (1998), no. 221, pp. 441-446.
- Anders Björn and Hans Riesel, Table errata to “Factors of generalized Fermat numbers”, Math. Comp. 74 (2005), no. 252, p. 2099.
- Anders Björn and Hans Riesel, Table errata 2 to "Factors of generalized Fermat numbers", Math. Comp. 80 (2011), pp. 1865-1866.
- Harvey Dubner and Wilfrid Keller, Factors of Generalized Fermat Numbers, Math. Comp. 64 (1995), no. 209, pp. 397-405.
- OEIS Wiki, Generalized Fermat numbers
Crossrefs
Programs
-
Maple
filter:= proc(t) if not isprime(t) then return false fi; 7 &^ (2^padic:-ordp(t-1,2)) mod t = 1 end proc: select(filter, [seq(i,i=5..10^6,2)]); # Robert Israel, Jun 16 2016
-
Mathematica
Select[Prime@Range[3, 10^5], IntegerQ@Log[2, MultiplicativeOrder[7, #]] &]
Comments