A273959 Decimal expansion of 'C', an auxiliary constant defined by D. Broadhurst and related to Bessel moments (see the referenced paper about the elliptic integral evaluations of Bessel moments).
1, 0, 8, 5, 4, 3, 8, 6, 9, 8, 3, 3, 6, 8, 4, 9, 7, 1, 0, 4, 0, 3, 5, 2, 7, 5, 6, 7, 5, 9, 2, 2, 6, 3, 2, 6, 1, 6, 4, 2, 5, 6, 7, 2, 4, 4, 3, 4, 7, 9, 4, 7, 5, 0, 4, 5, 8, 6, 4, 6, 5, 9, 2, 3, 8, 0, 3, 4, 8, 9, 0, 9, 5, 5, 4, 3, 0, 0, 7, 1, 0, 7, 4, 9, 8, 5, 7, 0, 8, 0, 3, 6, 0, 1, 3, 9, 1, 9, 8, 8
Offset: 0
Examples
0.10854386983368497104035275675922632616425672443479475045864659238...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
Programs
-
Mathematica
c = (Pi/16) (1 - 1/Sqrt[5]) EllipticTheta[3, 0, Exp[-Sqrt[15] Pi]]^4; RealDigits[c, 10, 100][[1]] RealDigits[((5 - Sqrt[5]) EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32]^2)/(20 Pi), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *) RealDigits[(Gamma[1/15] Gamma[2/15] Gamma[4/15] Gamma[8/15])/(240 Sqrt[5] Pi^2), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
-
PARI
th(x)=suminf(y=1, x^y^2) (1-1/sqrt(5))*(1+2*th(exp(-sqrt(15)*Pi)))^4*Pi/16 \\ Charles R Greathouse IV, Jun 06 2016
-
PARI
K(x)=Pi/2/agm(1,sqrt(1-x)) ((5 - sqrt(5))*K((16 - 7*sqrt(3) - sqrt(15))/32)^2)/20/Pi \\ Charles R Greathouse IV, Aug 02 2018
Formula
C = Pi/16 (1 - 1/sqrt(5)) (1+2 Sum_{n>=1} exp(-n^2 Pi sqrt(15)))^4.
Equals Pi/16 (1 - 1/sqrt(5)) theta_3(0, exp(-sqrt(15)*Pi))^4, where theta_3 is the elliptic theta_3 function.
Also equals s(5,1)/Pi^2 (where the Bessel moment s(5,1) is Integral_{0..inf} x I_0(x) K_0(x)^4 dx), a conjectural equality checked by the authors to 1200 decimal places.