cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A273959 Decimal expansion of 'C', an auxiliary constant defined by D. Broadhurst and related to Bessel moments (see the referenced paper about the elliptic integral evaluations of Bessel moments).

Original entry on oeis.org

1, 0, 8, 5, 4, 3, 8, 6, 9, 8, 3, 3, 6, 8, 4, 9, 7, 1, 0, 4, 0, 3, 5, 2, 7, 5, 6, 7, 5, 9, 2, 2, 6, 3, 2, 6, 1, 6, 4, 2, 5, 6, 7, 2, 4, 4, 3, 4, 7, 9, 4, 7, 5, 0, 4, 5, 8, 6, 4, 6, 5, 9, 2, 3, 8, 0, 3, 4, 8, 9, 0, 9, 5, 5, 4, 3, 0, 0, 7, 1, 0, 7, 4, 9, 8, 5, 7, 0, 8, 0, 3, 6, 0, 1, 3, 9, 1, 9, 8, 8
Offset: 0

Views

Author

Jean-François Alcover, Jun 05 2016

Keywords

Examples

			0.10854386983368497104035275675922632616425672443479475045864659238...
		

Programs

  • Mathematica
    c = (Pi/16) (1 - 1/Sqrt[5]) EllipticTheta[3, 0, Exp[-Sqrt[15] Pi]]^4;
    RealDigits[c, 10, 100][[1]]
    RealDigits[((5 - Sqrt[5]) EllipticK[(16 - 7 Sqrt[3] - Sqrt[15])/32]^2)/(20 Pi), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
    RealDigits[(Gamma[1/15] Gamma[2/15] Gamma[4/15] Gamma[8/15])/(240 Sqrt[5] Pi^2), 10, 100][[1]] (* Jan Mangaldan, Jan 04 2017 *)
  • PARI
    th(x)=suminf(y=1, x^y^2)
    (1-1/sqrt(5))*(1+2*th(exp(-sqrt(15)*Pi)))^4*Pi/16 \\ Charles R Greathouse IV, Jun 06 2016
    
  • PARI
    K(x)=Pi/2/agm(1,sqrt(1-x))
    ((5 - sqrt(5))*K((16 - 7*sqrt(3) - sqrt(15))/32)^2)/20/Pi \\ Charles R Greathouse IV, Aug 02 2018

Formula

C = Pi/16 (1 - 1/sqrt(5)) (1+2 Sum_{n>=1} exp(-n^2 Pi sqrt(15)))^4.
Equals Pi/16 (1 - 1/sqrt(5)) theta_3(0, exp(-sqrt(15)*Pi))^4, where theta_3 is the elliptic theta_3 function.
Also equals s(5,1)/Pi^2 (where the Bessel moment s(5,1) is Integral_{0..inf} x I_0(x) K_0(x)^4 dx), a conjectural equality checked by the authors to 1200 decimal places.