A273984 Decimal expansion of the odd Bessel moment s(5,1) (see the referenced paper about the elliptic integral evaluations of Bessel moments).
1, 0, 7, 1, 2, 8, 5, 0, 5, 5, 4, 2, 1, 8, 0, 7, 6, 5, 8, 5, 1, 8, 7, 1, 1, 9, 7, 8, 0, 3, 0, 8, 1, 7, 1, 6, 0, 7, 6, 3, 1, 7, 9, 7, 7, 7, 1, 6, 7, 0, 5, 6, 2, 1, 7, 0, 2, 4, 6, 9, 3, 6, 5, 9, 9, 5, 0, 1, 8, 3, 8, 7, 1, 4, 9, 3, 0, 6, 4, 0, 8, 7, 9, 9, 6, 2, 7, 2, 3, 0, 0, 0, 9, 3, 7, 4, 3, 0, 9, 6, 7, 6, 6, 9, 9
Offset: 1
Examples
1.07128505542180765851871197803081716076317977716705621702469365995...
Links
- David H. Bailey, Jonathan M. Borwein, David Broadhurst and M. L. Glasser, Elliptic integral evaluations of Bessel moments, arXiv:0801.0891 [hep-th], 2008, page 21.
Crossrefs
Programs
-
Mathematica
s[5, 1] = NIntegrate[x*BesselI[0, x]*BesselK[0, x]^4, {x, 0, Infinity}, WorkingPrecision -> 105]; RealDigits[s[5, 1]][[1]]
-
PARI
intnumosc(x=0,x*besseli(0,x)*besselk(0,x)^4,Pi) \\ Charles R Greathouse IV, Oct 23 2023
Formula
s(5,1) = Integral_{0..inf} x*BesselI_0(x)*BesselK_0(x)^4 dx.
Equals Pi^2 C (conjectural, where C is A273959).
Extensions
Offset corrected by Rick L. Shepherd, Jun 07 2016