A274042 Numbers k such that k - 53, k - 1, k + 1, k + 53 are consecutive primes.
9401700, 64312710, 78563130, 83494350, 92978310, 101520540, 111105090, 121631580, 136765860, 138330780, 139027950, 145673850, 157008390, 163050090, 166418280, 169288530, 170473410, 177920850, 198963210, 200765250, 213504870, 220428600
Offset: 1
Keywords
Examples
9401700 is the average of the four consecutive primes 9401647, 9401699, 9401701, 9401753. 64312710 is the average of the four consecutive primes 64312657, 64312709, 64312711, 64312763.
Links
- Karl V. Keller, Jr., Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Twin Primes
Programs
-
Mathematica
Select[Partition[Prime[Range[122*10^5]],4,1],Differences[#]=={52,2,52}&][[All,2]]+1 (* Harvey P. Dale, Mar 07 2018 *)
-
Python
from sympy import isprime,prevprime,nextprime for i in range(0,250000001,6): if isprime(i-1) and isprime(i+1) and prevprime(i-1) == i-53 and nextprime(i+1) == i+53: print (i,end=', ')
Comments