A274403 Number of primitive (squarefree) congruent numbers (A006991) <= 10^n.
3, 36, 361, 3503, 34065, 332712, 3252966, 31925924
Offset: 1
Links
- Jose Aranda, C++ program
- Estelle Basor and Bill Hart, A trillion triangles, American Institute of Mathematics,
- Keith Conrad, The Congruent Number Problem, The Harvard College Mathematics Review, (2008).
- Giovanni Resta, Table of primitive congruent numbers {1, 2, 3} mod 8
- Alexander Smith, The congruent numbers have positive natural density, arXiv:1603.08479 [math.NT], 2016.
- Wikipedia, Congruent number
- Shou-Wu Zhang, The Congruent Numbers and Heegner Points, Asian Pacific Mathematics Newsletter, Vol 3(2) (2013).
Programs
-
Mathematica
CongruentQ[n_] := Module[{x, y, z, ok=False}, (Which[!SquareFreeQ[n], Null[], MemberQ[{5,6,7}, Mod[n, 8]], ok=True, OddQ@n&&Length@Solve[x^2 + 2 y^2 + 8 z^2 == n, {x, y, z}, Integers]==2Length@Solve[x^2+2y^2+32z^2==n, {x, y, z}, Integers], ok=True, EvenQ@n&&Length@Solve[x^2+4y^2+8z^2==n/2, {x, y, z}, Integers]==2Length@Solve[x^2+4y^2+32z^2==n/2, {x, y, z}, Integers], ok=True]; ok)]; Table[Length@Select[Range[10^n], CongruentQ], {n, 1, 5}]
Extensions
a(7) corrected by Frank M Jackson, Jul 25 2016
a(8) from Jose Aranda, Jul 04 2024
Comments